首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1B亚型gp120基因密码子优化前后免疫原性的比较   总被引:4,自引:0,他引:4  
余双庆  冯霞  陈国敏  龚非  周玲  曾毅 《病毒学报》2004,20(3):214-217
对HIV-1B亚型gp120基因按照哺乳动物优势密码子的使用原则进行优化,以Westem blot方法比较其体外表达量.将优化前的野生型gp120基因和改造后的modgp120基因插入重组腺伴随病毒载体,构建了重组病毒rAAV-wtgp120和rAAV-modgp120,比较两者免疫Balb/C小鼠后的抗体和CTL应答.Western blot检测结果显示:优化后基因的体外表达量明显高于野生型基因,rAAV-modgp120与rAAV-wtgp120相比可更好地诱导Balb/C小鼠的CTL应答,但检测不到明显的抗体反应.由此得出结论,优化后gp120基因的体外表达量明显高于野生型基因,并且可以诱导更强的特异性CTL应答,但检测不到gp120抗体.  相似文献   

2.
3.
There is a significant variation of codon usage bias among different species and even among genes within the same organisms. Codon optimization, this is, gene redesigning with the use of codons preferred for the specific expression system, results in improved expression of heterologous genes in bacteria, plants, yeast, mammalian cells, and transgenic animals. The mechanisms preventing expression of genes with rare or low-usage codons at adequate levels are not completely elucidated. Human immunodeficiency virus (HIV) represents an interesting model for studying how differences in codon usage affect gene expression in heterologous systems. Construction of synthetic genes with optimized codons demonstrated that the codon-usage effects might be a major impediment to the efficient expression of HIV gag/pol and env gene products in mammalian cells. According to another hypothesis, the poor expression of HIV structural proteins even without HIV context is attributed to the so-called cis-acting inhibitory elements (INS), which are located within the protein-coding region. They consist of AU-rich sequences and may be inactivated through the introduction of multiple mutations over the large regions of gag gene. In our work, we evaluated expression of hybrid HIV-1 gag mRNAs where wild-type (A-rich) gag sequences were combined with artificial sequences. In such "humanized" gag fragments with adapted codon usage, AT-content was significantly reduced in favor of G and C nucleotides without any changes in protein sequence. We show that wild-type gag sequences negatively influence expression of gag-reporter, and the addition of fragments with optimized codons to gag mRNA partially rescues its expression. The results demonstrate that the expression of HIV-1 gag is determined by the ratio of optimized and rare codons within mRNA. Our data also indicates that some wtgag fragments counteract the influence of the other wtgag sequences, which cause the inhibition of gag expression. The presented data do not contradict the concept of INS; yet, it makes the definition of INS more complex. This supports the idea of a broader role of the selected codon usage in influencing the expression of HIV proteins in mammalian cells.  相似文献   

4.
5.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

6.
Codon optimization is a generic technique to achieve optimum expression of a foreign gene in the host's cell system. Selection of optimum codons depends on codon usage of the host genome and the presence of several desirable and undesirable sequence motifs. Searching these motifs in all possible combinations of the codons increases the search space exponentially with respect to sequence length. GASCO is an algorithm developed for the optimum codon selection using genetic algorithms. The algorithm reduces the search space and provides an approximate solution to the problem. The algorithm has applications in DNA vaccine design for successfully eliciting potent immune responses and synthetic gene design for metabolic pathway engineering. The software for the proposed algorithm is available on http://miracle.igib.res.in/gasco/.  相似文献   

7.
Herpes simplex virus type 1 (HSV-1) infects a wide range of cells, including dendritic cells. Consequently, HSV-1 vectors may be capable of eliciting strong immune responses to vectored antigens. To test this hypothesis, an HSV-1 amplicon plasmid encoding human immunodeficiency virus type 1 gp120 was constructed, and murine immune responses to helper virus-free amplicon preparations derived from this construct were evaluated. Initial studies revealed that a single intramuscular (i.m.) injection of 10(6) infectious units (i.u.) of HSV:gp120 amplicon particles (HSV:gp120) elicited Env-specific cellular and humoral immune responses. A potent, CD8(+)-T-cell-mediated response to an H-2D(d)-restricted peptide from gp120 (RGPGRAFVTI) was measured by a gamma interferon ELISPOT and was confirmed by standard cytotoxic-T-lymphocyte assays. Immunoglobulin G enzyme-linked immunosorbent assay analysis showed the induction of a strong, Env-specific antibody response. An i.m. or an intradermal administration of HSV:gp120 at the tail base elicited a more potent cellular immune response than did an intraperitoneal (i.p.) inoculation, although an i.p. introduction generated a stronger humoral response. The immune response to HSV:gp120 was durable, with robust cellular and humoral responses persisting at 171 days after a single 10(6)-i.u. inoculation. The immune response to HSV:gp120 was also found to be dose dependent: as few as 10(4) i.u. elicited a strong T-cell response. Finally, HSV:gp120 elicited significant Env-specific cellular immune responses even in animals that had been previously infected with wild-type HSV-1. Taken together, these data strongly support the use of helper-free HSV-1 amplicon particles as vaccine delivery vectors.  相似文献   

8.
Nayak BP  Sailaja G  Jabbar AM 《Journal of virology》2003,77(20):10850-10861
DNA vaccines exploit the inherent abilities of professional antigen-presenting cells to prime the immune system and to elicit immunity against diverse pathogens. In this study, we explored the possibility of augmenting human immunodeficiency virus type 1 gp120-specific immune responses by a DNA vaccine coding for a fusion protein, CTLA4:gp120, in mice. In vitro binding studies revealed that secreted CTLA4:gp120 protein induced a mean florescence intensity shift, when incubated with Raji B cells, indicating its binding to B7 proteins on Raji B cells. Importantly, we instituted three different vaccination regimens to test the efficacy of DNA vaccines encoding gp120 and CTLA4:gp120 in the induction of both cellular (CD8(+)) and antibody responses. Each of the vaccination regimens incorporated a single intramuscular (i.m.) injection of the DNA vaccines to prime the immune system, followed by two booster injections. The i.m.-i.m.-i.m. regimen induced only modest levels of gp120-specific CD8(+) T cells, but the antibody response by CTLA4:gp120 DNA was nearly 16-fold higher than that induced by gp120 DNA. In contrast, using the i.m.-subcutaneous (s.c.)-i.m. regimen, it was found that gp120 and CTLA4:gp120 DNAs were capable of inducing significant levels of gp120-specific CD8(+) T cells (3.5 and 11%), with antibody titers showing a modest twofold increase for CTLA4:gp120 DNA. In the i.m.-gene gun (g.g.)-g.g. regimen, the mice immunized with gp120 and CTLA4:gp120 harbored gp120-specific CD8(+) T cells at frequencies of 0.9 and 2.9%, with the latter showing an eightfold increase in antibody titers. Thus, covalent antigen modification and the routes of genetic vaccination have the potential to modulate antigen-specific immune responses in mice.  相似文献   

9.
10.
Prime-boost vaccination regimes have shown promise for obtaining protective immunity to HIV. Poorly understood mechanisms of cellular immunity could be responsible for improved humoral responses. Although CD4+ T-cell help promotes B-cell development, the relationship of CD4+ T-cell specificity to antibody specificity has not been systematically investigated. Here, protein and peptide-specific immune responses to HIV-1 gp120 were characterized in groups of ten mucosally immunized BALB/c mice. Protein and peptide reactivity of serum antibody was tested for correlation with cytokine secretion by splenocytes restimulated with individual gp120 peptides. Antibody titer for gp120 correlated poorly with the peptide-stimulated T-cell response. In contrast, titers for conformational epitopes, measured as crossreactivity or CD4-blocking, correlated with average interleukin-2 and interleukin-5 production in response to gp120 peptides. Antibodies specific for conformational epitopes and individual gp120 peptides typically correlated with T-cell responses to several peptides. In order to modify the specificity of immune responses, animals were primed with a gp120 peptide prior to immunization with protein. Priming induced distinct peptide-specific correlations of antibodies and T-cells. The majority of correlated antibodies were specific for the primed peptides or other peptides nearby in the gp120 sequence. These studies suggest that the dominant B-cell subsets recruit the dominant T-cell subsets and that T-B collaborations can be shaped by epitope-specific priming.  相似文献   

11.
12.

Background

An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM) delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN) and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.

Results

Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.

Significance

These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.  相似文献   

13.
DNA vaccines have been successful in eliciting potent immune responses in mice. Their efficiency, however, is restricted in larger animals. One reason for the limited performance of the DNA vaccines is the lack of molecular strategies to enhance immune responses. Additionally, genes directly cloned from pathogenic organisms may not be efficiently translated in a heterologous host expression system as a consequence of codon bias. To evaluate the influence of codon optimization on the immune response, we elected to use the Tat antigens of human immunodeficiency virus type 1 (HIV-1) (subtype C) and HIV-2, as these viral antigens are poorly immunogenic in natural infection and in experimental immunization and they are functionally important in viral infectivity and pathogenesis. Substituting codons that are optimally used in the mammalian system, we synthetically assembled Tat genes and compared them with the wild-type counterparts in two different mouse strains. Codon-optimized Tat genes induced qualitatively and quantitatively superior immune responses as measured in a T-cell proliferation assay, enzyme-linked immunospot assay, and chromium release assay. Importantly, while the wild-type genes promoted a mixed Th1-Th2-type cytokine profile, the codon-optimized genes induced a predominantly Th1 profile. Using a pepscan strategy, we mapped an immunodominant T-helper epitope to the core and basic domains of HIV-1 Tat. We also identified cross-clade immune responses between HIV-1 subtype B and C Tat proteins mapped to this T-helper epitope. Developing molecular strategies to optimize the immunogenicity of DNA vaccines is critical for inducing strong immune responses, especially to antigens like Tat. Our identification of a highly conserved T-helper epitope in the first exon of HIV-1 Tat of subtype C and the demonstration of a cross-clade immune response between subtypes B and C are important for a more rational design of an HIV vaccine.  相似文献   

14.
Codon engineering for improved antibody expression in mammalian cells   总被引:1,自引:1,他引:0  
While well established in bacterial hosts, the effect of coding sequence variation on protein expression in mammalian systems is poorly characterized outside of viral proteins or proteins from distant phylogenetic families. The potential impact is substantial given the extensive use of mammalian expression systems in research and manufacturing of protein biotherapeutics. We are studying the effect of codon engineering on expression of recombinant antibodies with an emphasis on developing manufacturing cell lines. CNTO 888, a human mAb specific for human MCP-1, was obtained by antibody phage display in collaboration with MorphoSys AG. The isolated DNA sequence of the antibody was biased towards bacterial codons, reflecting the engineering of the Fab library for phage display expression in Escherichia coli. We compared the expression of CNTO 888 containing the parental V-region sequences with two engineered coding variants. In the native codon exchanged (NCE) variant, the V-region codons were replaced with those used in naturally derived human antibody genes. In the human codon optimized (HCO) variant the V-region codons were those used at the highest frequency based on a human codon usage table. The antibody expression levels from stable transfections in mammalian host cells were measured. The HCO codon variant of CNTO 888 yielded the highest expressing cell lines and the highest average expression for the screened populations. This had a significant positive effect on the process to generate a CNTO 888 production cell line and indicates the potential to improve antibody expression in mammalian expression systems by codon engineering.  相似文献   

15.
Mazumder S  Maji M  Das A  Ali N 《PloS one》2011,6(2):e14644

Background

Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency, efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a susceptible murine model.

Methods and Findings

To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost (HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection. Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against Leishmania major infection.

Conclusion/Significance

HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in maintaining long-term immunity against intracellular pathogen like Leishmania.  相似文献   

16.
A synthetic E7 gene of human papillomavirus (HPV) type 16 was generated that consists entirely of preferred human codons. Expression analysis of the synthetic E7 gene in human and animal cells showed levels of E7 protein 20- to 100-fold higher than those obtained with wild-type E7. Enhanced expression of E7 protein resulted from highly efficient translation, as well as increased stability of the E7 mRNA due to its codon optimization. Higher levels of E7 protein in cells transfected with synthetic E7 correlated with significant loss of cell viability in various human cell lines. In contrast, lower E7 protein expression driven by the wild-type gene resulted in a slight induction of cell proliferation. Furthermore, mice inoculated with plasmids expressing the synthetic E7 gene produced significantly higher levels of E7 antibodies than littermates injected with wild-type E7, suggesting that synthetic E7 may be useful for DNA immunization studies and the development of genetic vaccines against HPV-16. In view of these results, we hypothesize that HPVs may have retained a pattern of G + C content and codon usage distinct from that of their host cells in response to selective pressure. Thus, the nonhuman codon bias may have been conserved by HPVs to prevent compromising viability of the host cells by excessive viral early protein expression, as well as to evade the immune system.  相似文献   

17.
18.
Small-animal models are needed to test human immunodeficiency virus (HIV) vaccine efficacy following viral challenge. To this end, we examined HIV-1-specific immune responses following immunization of nonobese diabetic-severe combined immunodeficient mice that were repopulated with human peripheral blood lymphocytes (hu-PBL-NOD/SCID mice). Autologous dendritic cells (DC) were transduced ex vivo with replication-defective, helper virus-free, herpes simplex virus type 1 (HSV-1) amplicons that expressed HIV-1 gp120 and were then injected into the hu-PBL-NOD/SCID mice. This resulted in primary HIV-1-specific humoral and cellular immune responses. Serum samples from vaccinated animals contained human immunoglobulin G that reacted with HIV-1 Env proteins by enzyme-linked immunosorbent assay and neutralized the infectivity of HIV-1 LAI and ADA strains. T cells isolated from the mice responded to viral antigens by producing gamma interferon when analyzed by enzyme-linked immunospot assay. Importantly, exposure of the vaccinated animals to infectious HIV-1 demonstrated partial protection against infectious HIV-1 challenge. This was reflected by a reduction in HIV-1(ADA) and by protection of the engrafted human CD4(+) T lymphocytes against HIV-1(LAI)-induced cytotoxicity. These data demonstrate that transduction of DC by HSV amplicon vectors expressing HIV-1 gp120 induce virus-specific immune responses in hu-PBL-NOD/SCID mice. This mouse model may be a useful tool to evaluate human immune responses and protection against viral infection following vaccination.  相似文献   

19.
BACKGROUND: Many clinical trials show that DNA vaccine potency needs to be greatly enhanced. We have reported that the N-terminal fragment of glycoprotein 96 (gp96) is able to produce an adjuvant effect for production of cytotoxic T-lymphocytes (CTLs) with hepatitis B virus (HBV)-specific peptides. Here, we report a new strategy for HBV DNA vaccine design using a partial gp96 sequence. MATERIALS AND METHODS: We linked the N-terminal 1-355aa (N355) of gp96 to HBV genes encoding for structural proteins, the major S and middle S2S envelope proteins and the truncated core HBcAg (1-149aa). ELISPOT, tetramer staining and intracellular IFN-gamma assay were performed to analyze the induced cellular immune responses of our DNA constructs in BALB/c mice and HLA-A2 transgenic mice. The relative humoral immune responses were analyzed in different IgG isotypes. RESULTS: The fusion genes induced 2- to 6-fold higher HBV-specific CD8(+) T cells as compared to the antigens alone. There was an approximate 10-fold decrease in the humoral immune responses with fusion genes based on HBV envelope proteins. Interestingly, the decreased humoral immune responses were not observed when antigens and plasmid encoding N355 were co-delivered. However, an approximate 20-fold higher antibody level was induced when linking N355 to a truncated HBcAg. Immunization by intramuscular injection resulted in predominantly IgG2a antibodies, which indicated that these vaccines preferentially prime Th1 responses. CONCLUSIONS: We constructed highly immunogenic fusions by linking the N-terminal fragment of gp96 to HBV antigens. Our results imply that the N-terminal fragment of gp96 may be used as a molecular adjuvant to enhance the potency of DNA vaccines.  相似文献   

20.
Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG+ and IgA+ antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号