首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

2.
Native human adult hemoglobin (Hb A) has mostly normal orientation of heme, whereas recombinant Hb A (rHb A) expressed in E. coli contains both normal and reversed orientations of heme. Hb A with the normal heme exhibits positive circular dichroism (CD) bands at both the Soret and 260‐nm regions, while rHb A with the reversed heme shows a negative Soret and decreased 260‐nm CD bands. In order to examine involvement of the proximal histidine (His F8) of either α or β subunits in determining the heme orientation, we prepared two cavity mutant Hbs, rHb(αH87G) and rHb(βH92G), with substitution of glycine for His F8 in the presence of imidazole. CD spectra of both cavity mutant Hbs did not show a negative Soret band, but instead exhibited positive bands with strong intensity at the both Soret and 260‐nm regions, suggesting that the reversed heme scarcely exists in the cavity mutant Hbs. We confirmed by 1H NMR and resonance Raman (RR) spectroscopies that the cavity mutant Hbs have mainly the normal heme orientation in both the mutated and native subunits. These results indicate that the heme Fe‐His F8 linkage in both α and β subunits influences the heme orientation, and that the heme orientation of one type of subunit is related to the heme orientation of the complementary subunits to be the same. The present study showed that CD and RR spectroscopies also provided powerful tools for the examination of the heme rotational disorder of Hb A, in addition to the usual 1H NMR technique. Chirality 28:585–592, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
L J Parkhurst  D J Goss 《Biochemistry》1984,23(10):2180-2186
Oxygen and CO ligand binding kinetics have been studied for the hybrid hemoglobin (Hb) alpha (human):beta (carp), hybrid II. Valency and half-saturated hybrids were used to aid in the assignment of the conformations of both chains. In hybrid II, an intermediate S state occurs, in which one chain has R- and the other T-state properties. In HbCO at pH 6 (plus 1 mM inositol hexaphosphate), the human alpha-chain is R state and the carp beta-chain is T state. We have no evidence at this pH that the carp beta-chain ever assumes the R conformation. At pH 6, the human alpha-chain shows human Hb R-state kinetics at low fractional photolysis and T-state rates for CO ligation by stopped flow. At pH 7, the human-chain R-state rate slows toward a carp hemoglobin rate. The carp beta-chains, on the other hand, react 50% more rapidly in the liganded conformation than in carp hemoglobin, and while the human alpha-chains are in the R state, the two beta-chains appear to function as a cooperative dimer. In this hemoglobin, the chains appear to be somewhat decoupled near pH 7, allowing a sequential conformational change from the R state in which the beta-chains first assume T-state properties, followed by the alpha-chains. The rate of the R-T conformational change for the carp beta-chains is at least 300 times greater than that for the human alpha-chains. At pH 9, the R----T conformational transition rate is at least 200 times slower than that for human hemoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

5.
Fang TY  Simplaceanu V  Tsai CH  Ho NT  Ho C 《Biochemistry》2000,39(45):13708-13718
Site-directed mutagenesis has been used to construct three recombinant mutant hemoglobins (rHbs), rHb(beta L105W), rHb(alpha D94A/betaL105W), and rHb(alpha D94A). rHb(beta L105W) is designed to form a new hydrogen bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface to lower the oxygen binding affinity by stabilizing the deoxy quaternary structure. We have found that rHb(beta L105W) does indeed possess a very low oxygen affinity and maintains normal cooperativity (P(50) = 28.2 mmHg, n(max) = 2.6 in 0.1 M sodium phosphate at pH 7.4) compared to those of Hb A (P(50) = 9.9 mmHg, n(max) = 3.2 at pH 7.4). rHb(alpha D94A/beta L105W) and rHb(alpha D94A) are expressed to provide evidence that rHb(betaL 105W) does form a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. Our multinuclear, multidimensional nuclear magnetic resonance (NMR) studies on (15)N-labeled rHb(beta L105W) have identified the indole nitrogen-attached (1)H resonance of beta 105Trp for rHb(beta L105W). (1)H NMR studies on Hb A and mutant rHbs have been used to investigate the structural basis for the low O(2) affinity of rHb(beta L105W). Our NMR results provide evidence that rHb(beta L105W) forms a new H-bond from beta 105Trp to alpha 94Asp in the alpha(1)beta(2) subunit interface of the deoxy quaternary structure. The NMR results also show that these three rHbs can switch from the R quaternary structure to the T quaternary structure in their ligated state upon addition of an allosteric effector, inositol hexaphosphate. We propose that the low O(2) affinity of rHb(beta L105W) is due to the formation of a new H-bond between alpha 105Trp and alpha 94Asp in the deoxy quaternary structure.  相似文献   

6.
Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between alpha67T and alpha14W and between beta72S and beta15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 degrees C show that rHb (alphaT67V), rHb (betaS72A), and rHb (alphaT67V, betaS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (alphaT67V), rHb (betaS72A), rHb (alphaT67V, betaS72A), and Hb A have similar quaternary structures in the alpha(1)beta(2) subunit interfaces. In particular, the inter-subunit H-bonds between alpha42Tyr and beta99Asp and between beta37Trp and alpha94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the alpha- and beta-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that alpha67T and beta72S are H-bonded to alpha14W and beta15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at alphaT67V and betaS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.  相似文献   

7.
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit.  相似文献   

8.
This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene ice ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A(2) (a minor component of human blood). We have obtained oxygen equilibrium curves and calculated O(2) affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, (1)H NMR spectroscopy data indicates that both α(1)(β/δ)(1) and α(1)(β/δ)(2) interfaces in rHb WM and rHb AE are perturbed, whereas only the α(1)δ(1) interface in Hb A(2) is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment.  相似文献   

9.
A range of conformationally distinct functional states within the T quaternary state of hemoglobin are accessed and probed using a combination of mutagenesis and sol-gel encapsulation that greatly slow or eliminate the T --> R transition. Visible and UV resonance Raman spectroscopy are used to probe the proximal strain at the heme and the status of the alpha(1)beta(2) interface, respectively, whereas CO geminate and bimolecular recombination traces in conjunction with MEM (maximum entropy method) analysis of kinetic populations are used to identify functionally distinct T-state populations. The mutants used in this study are Hb(Nbeta102A) and the alpha99-alpha99 cross-linked derivative of Hb(Wbeta37E). The former mutant, which binds oxygen noncooperatively with very low affinity, is used to access low-affinity ligated T-state conformations, whereas the latter mutant is used to access the high-affinity end of the distribution of T-state conformations. A pattern emerges within the T state in which ligand reactivity increases as both the proximal strain and the alpha(1)beta(2) interface interactions are progressively lessened after ligand binding to the deoxy T-state species. The ligation and effector-dependent interplay between the heme environment and the stability of the Trp beta37 cluster in the hinge region of the alpha(1)beta(2) interface appears to determine the distribution of the ligated T-state species generated upon ligand binding. A qualitative model is presented, suggesting that different T quaternary structures modulate the stability of different alphabeta dimer conformations within the tetramer.  相似文献   

10.
Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O2 binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the α2β2 tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, 1H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and α2β2 tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.  相似文献   

11.
This study examines the structural and functional effects of amino acid substitutions in the distal side of both the alpha- and beta-chain heme pockets of human normal adult hemoglobin (Hb A). Using our Escherichia coli expression system, we have constructed four recombinant hemoglobins: rHb(alphaL29F), rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W). The alpha29 and beta28 residues are located in the B10 helix of the alpha- and beta-chains of Hb A, respectively. The B10 helix is significant because of its proximity to the ligand-binding site. Previous work showed the ability of the L29F mutation to inhibit oxidation. rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) exhibit very low oxygen affinity and reduced cooperativity compared to those of Hb A, while the previously studied rHb(alphaL29F) exhibits high oxygen affinity. Proton nuclear magnetic resonance spectroscopy indicates that these mutations in the B10 helix do not significantly perturb the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces, while as expected, the tertiary structures near the heme pockets are affected. Experiments in which visible spectrophotometry was utilized reveal that rHb(alphaL29F) has equivalent or slower rates of autoxidation and azide-induced oxidation than does Hb A, while rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) have increased rates. Bimolecular rate constants for NO-induced oxidation have been determined using a stopped-flow apparatus. These findings indicate that amino acid residues in the B10 helix of the alpha- and beta-chains can play different roles in regulating the functional properties and stability of the hemoglobin molecule. These results may provide new insights for designing a new generation of hemoglobin-based oxygen carriers.  相似文献   

12.
Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states. Solution light-scattering experiments indicate that these mutants remain mostly tetrameric in the liganded (R) state. In equimolar mixtures of Hb S and each of the four rHb mutants (gammaD43L, gammaD43E, gammaD43R, and gammaD43W), the solubility (Csat) of each of the pairs of Hbs is higher than that of a similar mixture of Hb S and Hb A, as measured by dextran-Csat experiments. Furthermore, the Csat values for Hb S/rHb (gammaD43L), Hb S/rHb (gammaD43E), and Hb S/rHb (gammaD43R) mixtures are substantially higher than that for Hb S/Hb F. The results suggest that these three mutants of Hb F are more effective than Hb F in inhibiting the polymerization of deoxy-Hb S in equimolar mixtures.  相似文献   

13.
T-state hemoglobin with four ligands bound   总被引:8,自引:0,他引:8  
M C Marden  J Kister  B Bohn  C Poyart 《Biochemistry》1988,27(5):1659-1664
Flash photolysis kinetics have been measured for ligand recombination to hemoglobin (Hb) in the presence of two effectors: bezafibrate (Bzf) and inositol hexakisphosphate (IHP). The combined influence of the two independent effectors leads to predominantly T-state behavior. Samples equilibrated with 0.1 atm of CO are fully saturated, yet after photodissociation they show only T-state bimolecular recombination rates at all photolysis levels; this indicates that the allosteric transition from R to T occurs before CO rebinding and that the allosteric equilibrium favors the T-state tetramer with up to three ligands bound. Since all four ligands bind at the rate characteristic for the T-state, the return transition from T to R must occur after the fourth ligand was bound. At 1 atm of CO, rebinding to the initial R state competes with the allosteric transition resulting in a certain fraction of CO bound at the rate characteristic for the R state; this fraction is greater the smaller the percentage dissociation. Under 1 atm of oxygen, samples are not more than 93% saturated and show mainly T-state kinetics. The results show that all four hemes can bind oxygen or CO ligands in the T structure. The fraction of the kinetics occurring as geminate is less for partially liganded (T-state) samples than for fully liganded (R-state) Hb.  相似文献   

14.
Kinetic and EPR studies show that the first step in the reaction of NO with ferric myoglobin, opossum hemoglobin, and microperoxidase is the reversible formation of the H-NO complex: H + NO in equilibrium H-NO (where H = Mb+, or Hb+ OP, or MP+). The NO-combination rates are markedly affected by the presence or absence of the distal histidine. The distal histidine significantly reduces the NO-combination rates, perhaps by interaction between the distal histidine and the ferric iron. Thus the beta-chains of Hb+ OP and metmyoglobin show similar combination rates. In the absence of a distal histidine, the NO-combination rates in the alpha-chains of Hb+ OP are much faster and similar to those observed for the five-coordinate heme in microperoxidase. The loss of a water molecule from the six-coordination site is assumed to be the rate-limiting step.  相似文献   

15.
Our study examines the functional and structural effects of amino acid substitution in the distal side of beta-chains of human Hb Duarte (alpha(2)beta(2)(62Ala-->Pro)). We have compared the functional properties of the purified Hb Duarte with those of HbA, and through proton NMR and molecular dynamics simulations we have investigated their tertiary and quaternary structures. The variant exhibits an increased oxygen affinity with a normal Hill coefficient and Bohr effect. The abnormal function of Hb Duarte is attributed to the presence of a proline residue at the beta62 position, since the functional properties of another Hb variant in the same position, Hb J-Europa (beta(62Ala-->Asp)), have been described as normal. Thereafter (1)H-NMR studies have shown that the beta62 Ala-->Pro substitution causes structural modifications of the tertiary structure of the beta globins, leaving the quaternary structure unaltered. These results have been confirmed by extensive all-atom molecular dynamics simulations. All these findings lead to the conclusion that the beta62 Ala-->Pro substitution produces a destabilization of the E-helix extending downward to the CD corner. Particularly, a cavity near the distal histidine of the beta-chains, connecting the heme pocket to the solvent, is affected, altering the functional properties of the protein molecule.  相似文献   

16.
17.
Vuletich DA  Falzone CJ  Lecomte JT 《Biochemistry》2006,45(47):14075-14084
The recombinant two-on-two hemoglobin from the cyanobacterium Synechoccocus sp. PCC 7002 (S7002 rHb) is a bishistidine hexacoordinate globin capable of forming a covalent cross-link between a heme vinyl and a histidine in the C-terminal helix (H helix). Of the two heme axial histidines, His46 (in the E helix, distal side) and His70 (in the F helix, proximal histidine), His46 is displaced by exogenous ligands. S7002 rHb can be readily prepared as an apoglobin (apo-rHb), a non-cross-linked hemichrome (ferric iron and histidine axial ligands, rHb-R), and a cross-linked hemichrome (rHb-A). To determine the effects of heme binding and subsequent cross-linking, apo-rHb, rHb-R, and rHb-A were subjected to thermal denaturation and 1H/2H exchange. Interpretation of the latter data was based on nuclear magnetic resonance assignments obtained with uniformly 15N- and 13C,15N-labeled proteins. Apo-rHb was found to contain a cooperative structural core, which was extended and stabilized by heme binding. Cross-linking resulted in further stabilization attributed mainly to an unfolded-state effect. Protection factors were higher at the cross-link site and near His70 in rHb-A than in rHb-R. In contrast, other regions became less resistant to exchange in rHb-A. These included portions of the B and E helices, which undergo large conformational changes upon exogenous ligand binding. Thus, the cross-link readjusted the dynamic properties of the heme pocket. 1H/2H exchange data also revealed that the B, G, and H helices formed a robust core regardless of the presence of the heme or cross-link. This motif likely encompasses the early folding nucleus of two-on-two globins.  相似文献   

18.
A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.  相似文献   

19.
K H Han  G N La Mar  K Nagai 《Biochemistry》1989,28(5):2169-2170
Proton nuclear magnetic resonance spectroscopy has been utilized to investigate the rates of exchange with deuterium of the proximal histidyl ring protons in a series of chemically modified and mutated forms of Hb A. Differences in rates of exchange are related to differences in the stability of the deformed or partially unfolded intermediates from which exchange with bulk solvent takes place. Each modified/mutated Hb exhibited kinetic subunit heterogeneity in the reduced ferrous state, with the alpha subunit exhibiting faster exchange than the beta subunit. Modification or mutation resulted in significant increases in the His F8 ring NH exchange rates primarily for the affected subunit and only if the modification/mutation occurs at the allosterically important alpha 1 beta 2 subunit interface. Moreover, this enhancement in exchange rate is observed primarily in that quaternary state of the modified/mutated Hb in which the modified/substituted residue makes the intersubunit contact. This confirms the importance of allosteric constraints in determining the dynamic properties of the heme pocket. Using modified or mutated Hbs that can switch between the alternate quaternary states within a given ligation state or ligate within a given quaternary state, we show that the major portion of the enhanced exchange rate in R-state oxy Hb relative to T-state deoxy Hb originates from the quaternary switch rather than from ligation. However, solely ligation effects are not negligible. The exchange rates of the His F8 ring labile protons increase dramatically upon oxidizing the iron to the ferric state, and both the subunit kinetic heterogeneity and the allosteric sensitivity to the quaternary state are essentially abolished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Yuan Y  Simplaceanu V  Ho NT  Ho C 《Biochemistry》2010,49(50):10606-10615
On the basis of X-ray crystal structures and electron paramagnetic resonance (EPR) measurements, it has been inferred that the O(2) binding to hemoglobin is stabilized by the hydrogen bonds between the oxygen ligands and the distal histidines. Our previous study by multinuclear nuclear magnetic resonance (NMR) spectroscopy has provided the first direct evidence of such H-bonds in human normal adult oxyhemoglobin (HbO(2) A) in solution. Here, the NMR spectra of uniformly (15)N-labeled recombinant human Hb A (rHb A) and five mutant rHbs in the oxy form have been studied under various experimental conditions of pH and temperature and also in the presence of an organic phosphate, inositol hexaphosphate (IHP). We have found significant effects of pH and temperature on the strength of the H-bond markers, i.e., the cross-peaks for the side chains of the two distal histidyl residues, α58His and β63His, which form H-bonds with the O(2) ligands. At lower pH and/or higher temperature, the side chains of the distal histidines appear to be more mobile, and the exchange with water molecules in the distal heme pockets is faster. These changes in the stability of the H-bonds with pH and temperature are consistent with the changes in the O(2) affinity of Hb as a function of pH and temperature and are clearly illustrated by our NMR experiments. Our NMR results have also confirmed that this H-bond in the β-chain is weaker than that in the α-chain and is more sensitive to changes in pH and temperature. IHP has only a minor effect on these H-bond markers compared to the effects of pH and temperature. These H-bonds are sensitive to mutations in the distal heme pockets but not affected directly by the mutations in the quaternary interfaces, i.e., α(1)β(1) and/or α(1)β(2) subunit interface. These findings provide new insights regarding the roles of temperature, hydrogen ion, and organic phosphate in modulating the structure and function of hemoglobin in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号