首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence.  相似文献   

2.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

3.
The Ca2+ indicator photoprotein, aequorin, was used to estimate and monitor intracellular Ca2+ levels in Limulus ventral photoreceptors during procedures designed to affect Na+/Ca2+ exchange. Dark levels of [Ca2+]i were estimated at 0.66 +/- 0.09 microM. Removal of extracellular Na+ caused [Ca2+]i to rise transiently from an estimated 0.5-0.6 microM in a typical cell to approximately 21 microM; [Ca2+]i approached a plateau level in 0-Na+ saline of approximately 5.5 microM; restoration of normal [Na+]o lowered [Ca2+]i to baseline with a time course of 1 log10 unit per 9 s. The apparent rate of Nao+-dependent [Ca2+]i decline decreased with decreasing [Ca2+]i. Reintroduction of Ca2+ to 0-Na+, 0-Ca2+ saline in a typical cell caused a transient rise in [Ca2+]i from an estimated 0.36 microM (or lower) to approximately 16.5 microM. This was followed by a decline in [Ca2+]i approaching a plateau of approximately 5 microM; subsequent removal of Cao2+ caused [Ca2+]i to decline slowly (1 log unit in approximately 110 s). Intracellular injection of Na+ in the absence of extracellular Na+ caused a transient rise in [Ca2+]i in the presence of normal [Ca2+]o; in 0-Ca2+ saline, however, no such rise in [Ca2+]i was detected. Under constant voltage clamp (-80 mV) inward currents were measured after the addition of Nao+ to 0-Na+ 0-Ca2+ saline and outward currents were measured after the addition of Cao2+ to 0-Na+ 0-Ca2+ saline. The results suggest the presence of an electrogenic Na+/Ca2+ exchange process in the plasma membrane of Limulus ventral photoreceptors that can operate in forward (Nao+-dependent Ca2+ extrusion) or reverse (Nai+-dependent Ca2+ influx) directions.  相似文献   

4.
Cytoplasmic calcium increments in the absence of sarco (endo) plasmic reticulum function were measured with a low-affinity fluorophore Indo-1FF in single isolated smooth muscle cells from guinea-pig urinary bladder. To evaluate the Ca(2+)-buffering properties of the myoplasm, Ca2+ influx, measured as time integral of the Ica (integral of Ica), was compared with corresponding free Ca2+ increments (delta [Ca2+]i) in the cytoplasm. The ratio between integral of ICa and delta [Ca2+]i (integral Ica/delta [Ca2+]i), reflecting the Ca2+ buffering properties of the cytosol, was in the range of 4.9-9.3 pC/microM (mean 6.2 +/- 1.2, n = 12). It remained approximately constant (6.4 +/- 1.4 pC/microM, n = 8) during recordings lasting up to 25 min, suggesting that cytoplasmic Ca2+ binding does not change markedly during cell dialysis and that the endogenous Ca2+ buffer is not significantly washed out of the cell through the patch pipette. Wash-in or wash-out of BAPTA, a mobile high-affinity Ca2+ buffer, into or from the cell markedly changed the relationship between Ca2+ influx through Ca2+ channels and delta [Ca2+]i within minutes. Changes in integral of ICa/delta [Ca2+]i during the sequence of depolarizing steps, which increased free [Ca2+]i up to 5 microM, suggested lower limits for the apparent affinity of a rapid Ca2+ buffer (16 microM) and for the total buffer concentration (530 microM). Introduction of 4 mM DPTA (Kd for Ca2+ = 81 microM) into the cell more than doubled the total cytoplasmic Ca2+ buffer capacity. These results suggest that cytoplasmic Ca2+ buffer in smooth muscle cells has a low affinity for free Ca2+. The Ca(2+)-binding ratio of the cytoplasm in most cells was estimated to be between 30 and 40. The Ca(2+)-binding ratio did not differ markedly between cells isolated from neonatal (< or = 5 days) and adult animals.  相似文献   

5.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

6.
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations>or=1 proportional, variant increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50 proportional, variant DES, 1 proportional, variant thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5 proportional, variant, DES increased cell viability. At concentrations of 100-200 microM, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 microM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N' -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 microM)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 microM). ICI-182,780 did not affect 5 microM DES-induced increase in viability but partly reversed 100 microM DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.  相似文献   

7.
Estimates of the free myoplasmic [Ca2+] ([Ca2+]i) with fluorescent dyes are complicated by the fact that some properties of these dyes are altered in the intracellular environment. In the present study indo-1 was used to measure [Ca2+]i in isolated muscle fibers from Xenopus frogs. Fluorescent ratio signals obtained from indo-1 were converted into [Ca2+]i by means of an intracellular calibration method, which involved microinjection of 0.5 M EGTA and 1 M CaCl2 to get the ratio at very low (Rmin) and high (Rmax) [Ca2+], respectively; ratios at intermediate [Ca2+] were obtained by injection of solutions with different EGTA/Ca(2+)-EGTA proportions. This calibration gave an intracellular Ca2+ dissociation constant of indo-1 of 311 nM and a [Ca2+]i at rest of 52 +/- 4 nM (mean +/- SE; n = 15). Indo-1 records during twitches were compared with records obtained with the much faster indicator mag-indo-1. This analysis suggests a Ca2+ dissociation rate of indo-1 of 52 s-1 (22 degrees C). This makes indo-1 less suitable for measurements of [Ca2+]i during twitches, whereas it is fast enough to follow most aspects of [Ca2+]i during tetani, including the relaxation phase.  相似文献   

8.
The relationship between the concentration of cytosolic free Ca2+ ([Ca2+]i) and secretion of parathyroid hormone (PTH) was investigated in isolated bovine parathyroid cells using the fluorescent Ca2+ indicator, quin 2. Increasing the concentration of extracellular Ca2+ from 0.5 to 2.0 mM caused a 3-fold increase in [Ca2+]i (from 183 +/- 4 to 568 +/- 21 nM) which was associated with a 2-4-fold decrease in secretion of PTH. Decreasing extracellular Ca2+ to about 1 microM caused a corresponding fall in [Ca2+]i to 60-90 nM. Extracellular Ca2+-induced changes in [Ca2+]i were not affected by omission of extracellular Na+. Depolarizing concentrations of K+ (30 mM) depressed [Ca2+]i at all concentrations of extracellular Ca examined, and this was associated with increased secretion of PTH. Ionomycin (0.1 or 1 microM) increased [Ca2+]i at extracellular Ca2+ concentrations of 0.5, 1.0, and 2.0 mM, but inhibited secretion of PTH only at Ca concentrations near the "Ca2+ set point" (1.25 microM). In contrast, dopamine, norepinephrine (10 microM each), and Li+ (20 mM) potentiated secretion of PTH without causing any detectable change in [Ca2+]i. The results obtained with these latter secretagogues provide evidence for a mechanism of secretion which is independent of net changes in [Ca2+]i. The phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) did not alter [Ca2+]i or secretion of PTH at low (0.5 mM) extracellular Ca2+ concentrations. At 2.0 mM extracellular Ca2+, however, TPA (20 nM or 1 microM) depressed [Ca2+]i and potentiated secretion of PTH. The addition of TPA prior to raising the extracellular Ca2+ concentration reduced the subsequent increase in [Ca2+]i. The results show that the effects of TPA on secretion in the parathyroid cell are not readily dissociated from changes in [Ca2+]i and suggest that some TPA-sensitive process, perhaps involving protein kinase C, may be involved in those mechanisms that regulate [Ca2+]i in response to changes in extracellular Ca2+.  相似文献   

9.
R Penner  E Neher 《FEBS letters》1988,226(2):307-313
The patch-clamp technique was used to investigate the secretory responses of rat peritoneal mast cells at various intracellular calcium concentrations ([Ca2+]i). When Calcium was introduced into the cell with pipette-loaded dibromo-BAPTA, elevation of [Ca2+]i into the range 1-10 microM induced membrane capacitance increases indicative of exocytosis in a concentration-dependent manner. At higher concentrations a decrease of the response was observed. Cells that were exposed to micromolar [Ca2+]i underwent morphological alterations resulting in swelling, which is indicative of cytoskeletal alterations. The presence of dibromo-BAPTA (4 mM) strongly inhibited secretion induced by GTP-gamma-S, thus hampering the contribution of G-protein-mediated stimulation. Application of the Ca2+ ionophore ionomycin resulted in transient increases in [Ca2+]i which were parallelled by Ca2+-dependent secretion. Effective buffering of the cytosolic calcium level below 1 microM abolished the secretory response. Our results show that an increase in [Ca2+]i can trigger secretion, but only if it is high and sustained. During physiological stimulation, however, secretion proceeds at [Ca2+]i below 1 microM. It is, therefore, concluded that mast cell degranulation under physiological conditions is not simply a result of an increase in [Ca2+]i, but that other second messenger systems in conjunction with calcium act synergistically in order to ensure fast and efficient secretion.  相似文献   

10.
J B Smith  T Zheng  R M Lyu 《Cell calcium》1989,10(3):125-134
Ionomycin (1 microM) produced a large spike in cytosolic free Ca2+ [( Ca2+]i). The ionophore had no effect on [Ca2+]i if the sarcoplasmic reticulum had previously been Ca2+ depleted by stimulating neurohormone receptors. Ionomycin markedly increased 45Ca2+ efflux and decreased total cell Ca2+ by 60 to 70% in 1 min. Replacing extracellular Na+ [( Na+]o) with choline or N-methyl-D-glucamine strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total Ca2+. Ionomycin caused similar peak increases in [Ca2+]i in the presence and absence of [Na+]o, but the exponential fall from the peak was faster in the presence of [Na+]o. Dimethylbenzamil, a potent blocker of Na+/Ca2+ exchange in these cells, strongly inhibited the effects of ionomycin on 45Ca2+ efflux and total cell Ca2+. We conclude that the increase in cytosolic free Ca2+ produced by ionomycin may be sufficient to activate the plasma membrane Na+/Ca2+ exchanger which removes Ca2+ from the cytosol and helps restore basal [Ca2+]i.  相似文献   

11.
The effect of the antidepressant mirtazapine on cytosolic free Ca2+ concentration ([Ca2+]i) and viability has not been explored in any cell type. This study examined whether mirtazapine alters Ca2+ levels and causes cell death in osteoblast-like cells using MG63 human osteosarcoma cells as a model. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Mirtazapine at concentrations above 250 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. The mirtazapine-induced Ca2+ influx was sensitive to blockade of nifedipine and verapamil. In Ca(2+)-free medium, after pretreatment with 1.5 mM mirtazapine, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 2 microM CCCP (a mitochondrial uncoupler), and 1 microM ionomycin failed to release more stored Ca2+; conversely, pretreatment with thapsigargin, CCCP and ionomycin abolished mirtazapine-induced Ca2+ release. Inhibition of phospholipase C with 2 microM U73122 did not change mirtazapine-induced [Ca2+]i, increase. Seal of Ca2+ movement across the plasma membrane with 50 microM extracellular La3+ enhanced 1 microM thapsigargin-induced [Ca2+]i increase, suggesting that Ca2+ efflux played a role in lowering thapsigargin-induced [Ca2+]i increase; however, the same La3+ treatment did not alter mirtazapine-induced [Ca2+]i increase. At concentrations of 500 microM and 1000 microM, mirtazapine killed 30% and 60% cells, respectively. The cytotoxicity was not reversed by chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, mirtazapine induced a [Ca2+]i increase by causing Ca2+ release from stores and Ca2+ influx from extracellular space. Furthermore, mirtazapine caused cytotoxicity at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

12.
In rat pituitary somatotrophs, the stimulation of growth hormone secretion by growth hormone-releasing hormone (GHRH) is a Ca(2+)-dependent event involving Ca2+ influx. The presence of calcium-induced calcium release (CICR) Ca2+ stores has been suggested in these cells. The aim of our study was to demonstrate the presence of CICR stores in rat somatotrophs and to determine their function in GHRH Ca2+ signalling. To this end we measured cytosolic free Ca2+ concentration ([Ca2+]i), using indo-1 in purified rat somatotrophs in primary culture, while altering intracellular Ca2+ stores. Ionomycin (10 ttM) or 4-bromo-A23187 (10 ItM), used to mobilise organelle-bound Ca2+, raised [Ca2+]i in the absence of extracellular Ca2+. Caffeine (5 to 50 mM), used to mobilise Ca2+ from CICR stores, transiently raised [Ca2+]i in 65% of cells tested. The response to 40 mM caffeine was abolished when Ca2+ stores were depleted, with 1 microM thapsigargin or with 10 microM ryanodine. All cells that responded to 40 mM caffeine responded to 10 nM GHRH. The [Ca2+]i response to 10 nM GHRH was reversible and repeatable. However, the second response was 38% smaller than the first. Ryanodine treatment abolished the reduction in the second [Ca2+]i response, while thapsigargin increased the reduction by 67%. We conclude that rat somatotrophs possess CICR Ca2+ stores and that they account for 30-35% of the GHRH-induced increase in [Ca2+]i, and that their partial depletion is involved in somatotroph desensitization.  相似文献   

13.
Cytosolic-free [Ca2+] was evaluated in freshly dissociated smooth muscle cells from mouse thoracic aorta by the ratio of Fura Red and Fluo 4 emitted fluorescence using confocal microscopy. The role of intercellular communication in forming and shaping ATP-elicited responses was demonstrated. Extracellular ATP (250 microM) elicited [Ca2+]i transient responses, sustained [Ca2+]i rise, periodic [Ca2+]i oscillations and aperiodic repetitive [Ca2+]i transients. Quantity of smooth muscle cells in the preparation responding to ATP with periodical [Ca2+]i oscillations depended on the density of isolated cells on the cover slip. ATP-elicited bursts of [Ca2+]i spikes in 66+/-7% of cells in dense and in 33+/-8.5% of cells in non-dense preparations. The number of cells responding to ATP with bursts of [Ca2+]i spikes decreased from 55+/-5% (n=84) to 14+/-3% (n=141) in dense preparations pretreated with carbenoxolone. Simultaneous measurement of [Ca2+]i and ion currents revealed a correlation between [Ca2+]i and current oscillations. ATP-elicited bursts of current spikes in 76% of cells regrouped in small clusters and in 9% of isolated cells. Clustered cells responding to ATP with current oscillations had higher membrane capacity than clustered cells with transient and sustained ATP-elicited responses. Lucifer Yellow (1% in 130 mM KCl) injected into one of clustered cells was transferred to the neighboring cell only when ATP-elicited oscillations. Fast application of carbenoxolone (100 microM) inhibited ATP (250 microM) elicited Ca2+-dependent current oscillations. Taken together these results suggest that the probability of ATP (250 microM) triggered cytosolic [Ca2+]i oscillations accompanied with K+ and Cl- current oscillations increased with the coupling of smooth muscle cells.  相似文献   

14.
Ca2+ extrusion was measured simultaneously with the free intracellular Ca2+ concentration ([Ca2+]i) from single pancreatic acinar cells placed in microdroplets of extracellular solution (Tepikin, A. V., Voronina, S. G., Gallacher, D. V., and Petersen, O. H. (1992) J. Biol. Chem. 267, 3569-3572). Submaximal stimulation with cholecystokinin usually evoked discrete cytosolic Ca2+ spikes and each of these spikes was associated with a discrete and virtually synchronous pulse of Ca2+ extrusion into the extracellular microdroplet solution. When ACh evoked repetitive discrete [Ca2+]i spikes, each spike was also accompanied by a discrete pulse of Ca2+ extrusion. The velocity of Ca2+ extrusion oscillated with a time course similar to that of [Ca2+]i. The extracellular solution in our experiments had a low total calcium concentration (15-35 microM) and only a limited number of [Ca2+]i spikes (2-8) could be evoked. The magnitudes of the [Ca2+]i spikes and the amounts of Ca2+ extruded during each spike gradually decreased in each experiment. During the first cholecystokinin-evoked cytosolic Ca2+ spike the Ca2+ extrusion corresponded to a loss of 15-70% (mean value 39% +/- 12) of the mobilizable cellular calcium pool. The substantial pulsatile Ca2+ extrusion occurring synchronously with the receptor-activated cytosolic Ca2+ spikes is therefore an important element in repetitively bringing back [Ca2+]i to the resting level.  相似文献   

15.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

16.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

17.
We report the cytosolic free calcium, [Ca2+]i, responses of single murine B lymphocytes to whole and F(ab')2 fragments of anti-Ig measured in the flow cytometer with indo-1, a new fluorescent chelator of calcium. The principle advantages of this recording system are these: Indo-1 is highly fluorescent; hence, loading concentrations that introduce artifacts in the reported [Ca2+]i signal may be avoided. The measurement of [Ca2+]i by fluorescence ratio corrects for nonuniform dye uptake, making possible quantitative estimates of [Ca2+]i in single cells and an assessment of the variability of population responses. Baseline recordings of unstimulated lymphocytes indicated a narrow, stable range of [Ca2+]i (75 to 125 nM). The [Ca2+]i rise induced by various anti-Ig preparations exhibited considerable heterogeneity. The initial mean value for F(ab')2 anti-Ig-stimulated cells peaked above 1 microM and was due only to the release of Ca2+ from intracellular stores. A steady state elevation of [Ca2+]i was reached by 5 min and persisted for hours. Cells stimulated with intact anti-Ig reached similar initial peak [Ca2+]i values, but then declined toward baseline. This difference was due to membrane Ig-IgG Fc receptor (mIg-Fc gamma R) cross-linkage, because blocking the Fc gamma R with a monoclonal antibody made the [Ca2+]i responses to F(ab')2 and intact anti-Ig identical. The attenuation of the [Ca2+]i signal by mIg-Fc gamma R cross-linkage is proceeded by a corresponding Fc gamma-mediated reduction in anti-Ig-induced inositol trisphosphate elevation. These findings outline a biochemical basis for mIg- and Fc gamma R-mediated activation and regulation intrinsic to the B cell, and demonstrate the advantages of indo-1 over quin2 for fluorescent measurement of [Ca2+]i in small cells.  相似文献   

18.
Calcium homeostasis was studied following a depolarization-induced transient increase in [Ca2+]i in single cells of the clonal pituitary cell line of corticotropes, AtT-20 cells. The KCl-induced increase in [Ca2+]i was blocked in (i) extracellular calcium-deficient solutions, (ii) external cobalt (2.0 mM), (iii) cadmium (200 microM), and (iv) nifedipine (2.0 microM). The mean increase in [Ca2+]i in single cells in the presence of an uncoupler of mitochondrial function [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, FCCP, 1 microM] was 54 +/- 13 nM (n = 9). The increase in [Ca2+]i produced by FCCP was greater either during or following a KCl-induced [Ca2+]i load. However, FCCP did not significantly alter the clearance of calcium during a KCl-induced rise in [Ca2+]i. Fifty percent of the cells responded to caffeine (10 mM) with an increase in [Ca2+]i (191 +/- 24 nM; n = 21) above resting levels; this effect was blocked by ryanodine (10 microM). Thapsigargin (2 microM) and 2,5 di(-t-butyl)-1,4 hydroquinone (BuBHQ, 10 microM) produced increases in [Ca2+]i (47 +/- 11 nM, n = 6 and 22 +/- 4 nM, n = 8, respectively) that increased cell excitability. These results support a role for mitochondria and sarco-endoplasmic reticulum calcium stores in cytosolic [Ca2+]i regulation; however, none of these organelles are primarily responsible for the return of [Ca2+]i to resting levels following this KCl-induced [Ca2+]i load.  相似文献   

19.
We have studied the effects of extracellular nucleotides on the cytosolic free calcium concentration [( Ca2+]i) in J774 macrophages using quin2 and indo-1 as indicator dyes. Micromolar quantities of ATP induced a biphasic increase in [Ca2+]i: a rapid and transient increase (peak I) which was due to mobilization of Ca2+ from intracellular stores and a second more sustained elevation (peak II) due to influx of extracellular Ca2+. The sustained peak II elevation had two components, a "low threshold" (1 microM ATP) response which saturated at 10-50 microM ATP and a "high threshold" response, apparent at [ATP] greater than 100 microM. The latter component was not seen with nucleotides other than ATP and correlated with an ATP-induced generalized increase in plasma membrane permeability. A variant J774 cell line was isolated which does not demonstrate this ATP-induced increase in plasma membrane permeability; nevertheless, it demonstrated both the release of Ca2+ from intracellular stores and the low threshold component of the Ca2+ influx across the plasma membrane in response to nucleoside di- and triphosphates. Several lines of evidence indicate that the fully ionized (i.e. free acid) forms of nucleoside di- and triphosphates were the ligands that mediated these increases in [Ca2+]i. These data show that extracellular nucleotides mediate Ca2+ fluxes by two distinct mechanisms in J774 cells. In one, the rise in [Ca2+]i is due to release of Ca2+ from intracellular stores and Ca2+ influx across the plasma membrane. This response is elicited preferentially by the free acid forms of purine and pyrimidine nucleoside di- and triphosphates. In the other, the rise in [Ca2+]i reflects a more generalized increase in plasma membrane permeability and is elicited by ATP4- only.  相似文献   

20.
P Hochstrate  A Juse 《Cell calcium》1991,12(10):695-712
The retinal tissue of blowflies was loaded with the fluorescent Ca2+ indicator Fura-2 by incubating cut heads in saline solutions which contained the membrane permeable acetoxymethylester of Fura-2 (Fura-2/AM). The spectral analysis of the tissue fluorescence showed that Fura-2/AM was intracellularly hydrolysed to Fura-2. In order to monitor the intracellular free Ca2+ concentration ([Ca2+]i) the Fura-2 fluorescence was excited by short light flashes. The fluorescence was calibrated by incubating the tissue in Ca2+ buffers of high buffering capacity and subsequent disruption of the cell membranes by freeze/thawing, which gave a dissociation constant for the Ca(2+)-Fura-2 complex of 100 nM. When the extracellular Ca2+ concentration ([Ca2+]o) was altered [Ca2+]i reversibly changed. The changes were most pronounced when [Ca2+]o was varied in the millimolar range, e.g. [Ca2+]i increased from 0.07 microM at [Ca2+]o = 0.1 mM to 1 microM at [Ca2+]o = 10 mM. When extracellular Na+ was replaced by Li+ or other monovalent ions, [Ca2+]i rapidly increased which supports the view that electrogenic Na+/Ca2+ exchange contributes to the control of [Ca2+]i. However, [Ca2+]i decreased again when the tissue was superfused with Na(+)-free media for longer periods, which points to a Ca(2+)-transporting system different from Na+/Ca2+ exchange. Light adaptation had only a small effect on [Ca2+]i. Even after intense stimulation [Ca2+]i increased by a factor of 1.5 only, which is in line with results obtained in the photoreceptors of Balanus and Apis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号