首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
裸燕麦EMS突变体库筛选与分析   总被引:1,自引:0,他引:1  
燕麦是重要的粮饲兼用作物,构建燕麦EMS突变体库对燕麦功能基因组学研究和遗传改良有重要意义。本试验利用化学诱变剂甲基磺酸乙酯(EMS,ethyl methane sulfonate)处理燕麦品种花早2号,获得了4083株M1材料;对其中2000个单株种植了M2株行,进行全生育期调查,鉴定其表型变化;对2份黄化苗突变材料种植了M3家系,进行相关突变性状的稳定性验证。结果表明,燕麦经EMS处理后代变异巨大,在M2发现表型突变材料196份,变异率为9.8%,变异类型非常丰富,包括幼苗习性、叶片性状、分蘖、株高、穗部形态及成熟期等突变株系。M3证实突变的黄化苗特性可以稳定遗传。本研究建立了燕麦EMS诱变体系,获得的燕麦变异类型丰富,为燕麦功能基因组学研究和燕麦遗传改良奠定了材料基础。  相似文献   

2.
采用单因子实验和正交实验对高产纤溶酶的枯草杆菌最佳发酵工艺进行了优化,结果表明,该菌株分泌的胞外酶具有较强的体外溶栓作用,产纤溶酶最佳的发酵条件为:3%可溶性淀粉,2%豆浆全汁(鲜豆),0.02%CaCl2,培养温度为37℃,初始pH8.3,装液量为250mL三角瓶50mL,发酵时间44h左右,Ca^2 、Mg^2 和Mn^2 对酶活力有促进作用,Cu^2 对酶活性有强烈抑制作用。  相似文献   

3.
低双乙酰啤酒酵母菌株BEZ112的选育   总被引:15,自引:1,他引:15  
以啤酒酿造生产菌株啤酒酵母(Saccharomyces cerevisiae)FB作为出发菌株,用甲基磺酸乙酯(EMS)诱变,经分离筛选得到一株优良的啤酒酵母菌株BEZ112。该菌株的絮凝性、发酵度、酒精度、发酵液的总酯和总高级醇的含量等特性保持了亲株的优良性状。但以12°Bx麦芽汁为培养基用500mL三角瓶在12℃下发酵,该菌株发酵至第4d,发酵液中的双乙酰含量达到峰值(0.291mg/L),比出发菌株FB发酵4d的峰值降低了30%,发酵至第8d,BEZ112发酵液中的双乙酰含量比出发菌株FB的降低了23%。以12°Bx麦芽汁为培养基用500L罐在12℃下发酵8d,BEZ112发酵液中的双乙酰含量(0.091mg/L)比出发菌株FB的(0.124mg/L)降低了27%。发酵得到的啤酒口感纯正清爽。  相似文献   

4.
克隆枯草芽孢杆菌纤溶酶(Bacillussubtilisfibrinolyticenzyme,BSFE)基因及其前导肽序列。通过农杆菌EHA105介导转化,获得转基因烟草植株。其BSFE的表达水平为叶片42.97±28.59U·g-1FW、茎15.14±10.57U·g-1FW和根25.55±14.71U·g-1FW。其内源BSFE信号肽可在转基因烟草中行使蛋白转运功能,使BSFE具有分泌表达特性。这一系统可用于建立利用植物组织分泌表达外源蛋白的系统模型。  相似文献   

5.
豆豉纤溶酶产生菌的筛选及菌种鉴定   总被引:10,自引:0,他引:10  
在收集的全国 2 1个豆豉产品中分离到 36 9株革兰氏阳性芽孢杆菌 ,对其进行产纤溶酶活性筛选 ,得到 1株高产纤溶酶菌株HGD10 7。对菌株HGD10 7进行形态、生理、生化鉴定 ,初步鉴定为枯草芽孢杆菌。  相似文献   

6.
EMS诱变甘蓝型油菜M_2代群体的表型突变研究   总被引:2,自引:0,他引:2  
利用4种浓度EMS处理甘蓝型油菜NJ7982种子,选取其中诱变效果好的处理(0.4%EMS),研究其后代突变型和突变频率。对4.8万株的M2代群体鉴定结果表明,6种器官性状在群体中均出现了突变。子叶突变性状包括3子叶、子叶黄化等,占群体的0.22%;叶片突变性状包括黄化叶、白化叶、紫色叶、上卷叶、下卷叶等,占0.74%;花器突变性状包括紫色花蕾、死蕾、3花瓣、6花瓣、白色瓣、花瓣黄白镶嵌、花瓣皱缩、完全不育、部分可育等,占9.38%;株型突变性状包括矮秆、紫茎等,占4.98%;角果突变性状包括粗角、长角、紫角等,占2.79%;种皮黄色,占0.40%;总的表型突变频率为18.51%。这些遗传多样性的突变材料,为甘蓝型油菜种质创新及品种遗传改良提供基础性材料。  相似文献   

7.
用于蛋白质体外分子进化研究的DNA随机突变技术   总被引:1,自引:0,他引:1  
蛋白质体外分子进化是模拟自然的进化过程,利用基因随机突变和定向筛选(选择)技术,以获得具有预期新功能的突变体分子。虽然体外进化近几年才产生,但已成为医药和工业领域中筛选具有特殊催化性质的酶的最重要的方法之一。DNA随机突变技术是蛋白质体外分子进化研究的基础,本文将对几种最重要的突变方法:倾向错误的PCR、DNA重排、模板交错延伸反应和随机延伸突变的原理和应用等加以介绍。  相似文献   

8.
9.
10.
纳豆激酶的研究进展   总被引:11,自引:0,他引:11  
纳豆激酶是一种由纳豆菌产生的具有强烈纤溶作用的丝氨酸蛋白酶,与传统的一些溶栓剂相比,其具有安全性好、成本低、口服有效等优点。就纳豆激酶的理化性质、制备过程、生物学功能、酶活测定方法及分子生物学研究等进行了综述。  相似文献   

11.
Fisher's geometric model of adaptation (FGM) has been the conceptual foundation for studies investigating the genetic basis of adaptation since the onset of the neo Darwinian synthesis. FGM describes adaptation as the movement of a genotype toward a fitness optimum due to beneficial mutations. To date, one prediction of FGM, the probability of improvement is related to the distance from the optimum, has only been tested in microorganisms under laboratory conditions. There is reason to believe that results might differ under natural conditions where more mutations likely affect fitness, and where environmental variance may obscure the expected pattern. We chemically induced mutations into a set of 19 Arabidopsis thaliana accessions from across the native range of A. thaliana and planted them alongside the premutated founder lines in two habitats in the mid‐Atlantic region of the United States under field conditions. We show that FGM is able to predict the outcome of a set of random induced mutations on fitness in a set of A. thaliana accessions grown in the wild: mutations are more likely to be beneficial in relatively less fit genotypes. This finding suggests that FGM is an accurate approximation of the process of adaptation under more realistic ecological conditions.  相似文献   

12.
The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2‐fold improvement in kcat, 5.2‐fold lower Km and 16‐fold improvement in catalytic efficiency for D ‐tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D ‐tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D ‐tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9‐fold) improvement in kcat and a 2.4‐fold increase in Km compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the Km up to 2.6‐fold for D ‐tyrosine but one variant 145_V153A increased the Km 2.4‐fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an α‐helix providing one of the conserved histidine residues of the active site. The kcat and Km values for L ‐tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1‐fold high catalytic efficiency compared to the WT which is a 7.6‐fold lower improvement compared to D ‐tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D ‐tyrosine:D ‐DOPA and a 1.4‐fold higher L ‐tyrosine:L ‐DOPA activity ratio compared to the WT. Biotechnol. Bioeng. 2013; 110: 1849–1857. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We have developed a statistical method named MAP (mutagenesis assistant program) to equip protein engineers with a tool to develop promising directed evolution strategies by comparing 19 mutagenesis methods. Instead of conventional transition/transversion bias indicators as benchmarks for comparison, we propose to use three indicators based on the subset of amino acid substitutions generated on the protein level: (1) protein structure indicator; (2) amino acid diversity indicator with a codon diversity coefficient; and (3) chemical diversity indicator. A MAP analysis for a single nucleotide substitution was performed for four genes: (1) heme domain of cytochrome P450 BM-3 from Bacillus megaterium (EC 1.14.14.1); (2) glucose oxidase from Aspergillus niger (EC 1.1.3.4); (3) arylesterase from Pseudomonas fluorescens (EC 3.1.1.2); and (4) alcohol dehydrogenase from Saccharomyces cerevisiae (EC 1.1.1.1). Based on the MAP analysis of these four genes, 19 mutagenesis methods have been evaluated and criteria for an ideal mutagenesis method have been proposed. The statistical analysis showed that existing gene mutagenesis methods are limited and highly biased. An average amino acid substitution per residue of only 3.15-7.4 can be achieved with current random mutagenesis methods. For the four investigated gene sequences, an average fraction of amino acid substitutions of 0.5-7% results in stop codons and 4.5-23.9% in glycine or proline residues. An average fraction of 16.2-44.2% of the amino acid substitutions are preserved, and 45.6% (epPCR method) are chemically different. The diversity remains low even when applying a non-biased method: an average of seven amino acid substitutions per residue, 2.9-4.7% stop codons, 11.1-16% glycine/proline residues, 21-25.8% preserved amino acids, and 55.5% are amino acids with chemically different side-chains. Statistical information for each mutagenesis method can further be used to investigate the mutational spectra in protein regions regarded as important for the property of interest.  相似文献   

14.
Q103R subtilisin E was isolated following random mutagenesis and screening for improved activity in the presence of dimethylformamide (DMF). Our goal is to identify the mechanism(s) by which amino acid substitutions can enhance enzyme activity in polar organic solvents. A quantitative framework for comparing substrate binding and catalytic activities of mutant and wild-type enzymes in the presence and absence of DMF is outlined. Kinetic experiments performed at high salt concentration (1M KCl) reveal that the mechanism behind the Q103R variant's enhanced activity toward succinyl-Ala-Ala-Pro-Phe-p-nitroanilide is both electrostatic and nonelectrostatic in origin. Favorable electrostatic interactions between the negatively charged succinyl group of the substrate and the positive charge on Arg 103 are responsible for tighter substrate binding. This conclusion is supported by kinetic experiments performed on the related substrate Ala-Ala-Pro-Phe-p-nitroanilide and the hydrolysis kinetics of the Q103E, Q103K, and Q103S variants constructed by site-directed mutagenesis. These results highlight the importance of the choice of the substrate used to screen for improvements in catalytic activity.  相似文献   

15.
用0.05%~8.00%的甘露醇、山梨醇和聚乙二醇6000等3种渗透调节剂可提高转枯草芽孢杆菌纤溶酶(Bacillus subtilis fibrinolytic enzyme, BSFE)转基因烟草(Nicotiana tabacum L.)根系BSFE的分泌表达水平,其水培液BSFE活性在15 d内基本呈抛物线型变化趋势.经3种渗透剂处理后转BSFE基因烟草水培液的BSFE活性峰值明显高于对照,且出现时间比对照相对延迟1-2d.甘露醇、山梨醇和聚乙二醇6000可作为该转基因烟草根系BSFE分泌表达的有效化学调节剂.  相似文献   

16.
About 15,000 M2 seeds of ethyl-methane-sulphonate (EMS)-mutagenized population were screened along with Al-tolerant and sensitive checks and the M0 variety. Strongly acidic soil with an external application of a toxic Al-solution and exposure to moisture stress was used to maximize selection pressure. Twenty-one M2 plants with root lengths of greater than the mean of the tolerant check were selected and planted for seed production. Candidate M3 plants were investigated for Al-tolerance and for morpho-agronomic traits under greenhouse and field conditions, respectively. Highly significant differences were observed for Al-tolerance between the candidate mutant lines and the M0 (P?<?.001), and between mutant lines and the sensitive check (P?<?.001). Similarly, significant differences were observed between the mutant lines for 16 of the 20 quantitative traits measured. This study is the first to report successful induction of enhanced Al-tolerance in tef by using EMS mutagenized population.  相似文献   

17.
Aminopeptidases can selectively catalyze the cleavage of the N-terminal amino acid residues from peptides and proteins. Bacillus subtilis aminopeptidase (BSAP) is most active toward p-nitroanilides (pNAs) derivatives of Leu, Arg, and Lys. The BSAP with broad substrate specificity is expected to improve its application. Based on an analysis of the predicted structure of BSAP, four residues (Leu 370, Asn 385, Ile 387, and Val 396) located in the substrate binding region were selected for saturation mutagenesis. The hydrolytic activity toward different aminoacyl-pNAs of each mutant BSAP in the culture supernatant was measured. Although the mutations resulted in a decrease of hydrolytic activity toward Leu-pNA, N385L BSAP exhibited higher hydrolytic activities toward Lys-pNA (2.2-fold) and Ile-pNA (9.1-fold) than wild-type BSAP. Three mutant enzymes (I387A, I387C and I387S BSAPs) specially hydrolyzed Phe-pNA, which was undetectable in wild-type BSAP. Among these mutant BSAPs, N385L and I387A BSAPs were selected for further characterized and used for protein hydrolysis application. Both of N385L and I387A BSAPs showed higher hydrolysis efficiency than the wild-type BASP and a combination of the wild-type and N385L and I387A BSAPs exhibited the highest hydrolysis efficiency for protein hydrolysis. This study will greatly facilitate studies aimed on change the substrate specificity and our results obtained here should be useful for BSAP application in food industry.  相似文献   

18.
19.
The feasibility of altering the chain length specificity of industrially important Rhizomucor miehei lipase was investigated by randomly mutating Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. The recombinant lipase was initially expressed in E. coli. Individual colonies were selected, grown, and the DNA sequence of the lipase gene determined. Fourteen of the 19 possible mutants were identified and each of these was transformed into Pichia pastoris which expresses the enzyme extracellularly. The yeast was grown and the supernatants assessed in several assays with long and short chain substrates. Based on this preliminary screen, one mutant, Phe94Gly, was selected and purified to homogeneity for further analysis. It was found that the substitution of phenylalanine 94 with glycine led to an enzyme which was about six times less active against resorufin ester but displayed 3-4 times higher activity with short chain substrates such as butyric acid esters. The observed alteration to the enzyme specificity was rationalised using the available 3D structure of the lipase.  相似文献   

20.
Error-prone polymerase chain reactions (epPCRs) are often used to introduce mutations in random mutagenesis, which has been used as a tool in protein engineering. Here, we developed a new method of epPCR using heavy water as a solvent instead of normal water (H2O). Rhodopsin cDNA of the Ayu fish (Plecoglossus altivelis) was used as a template and was amplified using five different conditions: (A) 100% H2O with no Mn2+, (B) 100% H2O/0.6 mM Mn2+, (C) 99% D2O with no Mn2+, (D) 99% D2O/0.6 mM Mn2+ and (E) 99% H218O with no Mn2+. The 13,960 (for each of the conditions A to D) and 33,504 (for condition E) base pairs were sequenced. A maximum error rate of 1.8 × 10−3 errors/bp was detected in condition D, without any particular hot-spot mutations. A high preference for AT → GC transitions was observed in condition D, whereas a high preference for transitions over transversions was observed in condition C. All of the mutations observed in condition E were transversions. When conditions A and C were applied to another template, the honeybee actin gene, the results were comparable to those for Ayu rhodopsin. Based on these results, the use of heavy water, instead of H2O, as a solvent for epPCR can introduce random mutations without positional bias, template dependency or decreased yield. Our new epPCR method, and possibly combining the use of D2O and H218O, may be a powerful random mutagenesis technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号