首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amacrine cells in the retina of the rat are described in Golgi-stained whole-mounted retinae. Nine morphologically distinct types of cell were found: one type of diffuse cell, five types of unistratified cell, two types of bistratified cell, and one type of stratified diffuse cell. Measurements show that the largest unistratified cells have a dendritic field 2 mm across. One type of interplexiform cell is also described. Wide-field diffuse amacrine cells and unistratified amacrine cells were found with their somata located in either the inner nuclear layer or the ganglion cell layer. It is clear that there may be an amacrine cell system in the ganglion cell layer of the rat retina.  相似文献   

2.
Progenitor cells of the testosterone-producing Leydig cells revealed   总被引:1,自引:0,他引:1  
The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.  相似文献   

3.
Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31+ microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, most hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise to hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short-term and long-term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells.  相似文献   

4.
Recent results show that, during the process known as cell competition, winner cells identify and kill viable cells from a growing population without requiring engulfment. The engulfment machinery is mainly required in circulating macrophages (hemocytes) after the discrimination between winners and losers is completed and the losers have been killed and extruded from the epithelium. Those new results leave us with the question as to which molecules allow winner cells to recognize and impose cell death on the loser cells during cell competition.  相似文献   

5.
6.
Fitzgerald-Bocarsly P 《BioTechniques》2002,(Z1):16-20, 22, 24-9
NIPCs have had a long history of study, with the first observations of peripheral blood cells with IFN-producing capacity being made approximately 20 years ago. Over the past three years with the identification of NIPCs as plasmacytoid dendritic cells, an enormous amount has been learned about their function in both innate and adaptive immunity and their dysregulation in certain viral infections such as HIV infection and in autoimmunity. Further studies of their mechanisms of IFN-alpha induction, of their distribution and in vivo function are required. It is anticipated that a further understanding of the PDC will lead to the ability to specifically manipulate these cells in human disease.  相似文献   

7.
8.
Navigating the pathway from embryonic stem cells to beta cells   总被引:2,自引:0,他引:2  
The compelling goal of using in vitro differentiation of stem cells to obtain replacement pancreatic beta cells that are clinically effective in treating diabetes has until now eluded researchers. This difficulty raises the question of whether more effective strategies are available. We propose that the native embryonic pathway leading to the definitive endoderm lineage, and continuing on to the endocrine pancreas, is the one most likely to succeed for the in vitro differentiation of embryonic stem cells. We question however whether gain-of-function approaches involving genes necessary for beta cell development are destined to work effectively, and suggest alternative approaches to identifying conditions sufficient for in vitro beta cell differentiation.  相似文献   

9.
Cancer stem cells: the lessons from pre-cancerous stem cells   总被引:1,自引:0,他引:1  
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.  相似文献   

10.
Summary The epithelium of the anal canal from 22 humans was studied in order to demonstrate the possible presence of endocrine cells and melanin-containing cells. Histochemical methods aimed at demonstrating reducing substances, biogenic amines, argyrophilia and melanin, were used. Enterochromaffin cells, and possibly other types of endocrine cells, were demonstrated above the dentate line both in colo-rectal type epithelium and in the anal transitional zone. Melanin-containing cells could also occasionally be found in the anal transitional zone. The presence of endocrine cells in the anal canal epithelium opens up the possibility that carcinoids can originate in this region. Further, the presence of melanin-containing cells might explain the occurrence of malignant melanomas arising above the dentate line.  相似文献   

11.
Anergic T cells inhibit the antigen-presenting function of dendritic cells   总被引:19,自引:0,他引:19  
The phenomena of infectious tolerance and linked-suppression are well established, but the mechanisms involved are incompletely defined. Anergic T cells can inhibit responsive T cells in vitro and prolong skin allograft survival in vivo. In this study the mechanisms underlying these events were explored. Allospecific mouse T cell clones rendered unresponsive in vitro inhibited proliferation by responsive T cells specific for the same alloantigens. The inhibition required the presence of APC, in that the response to coimmobilized anti-CD3 and anti-CD28 Abs was not inhibited. Coculture of anergic T cells with bone marrow-derived dendritic cells (DC) led to profound inhibition of the ability of the DC to stimulate T cells with the same or a different specificity. After coculture with anergic T cells expression of MHC class II, CD80 and CD86 by DC were down-regulated. These effects did not appear to be due to a soluble factor in that inhibition was not seen in Transwell experiments, and was not reversed by addition of neutralizing anti-IL-4, anti-IL-10, and anti-TGF-beta Abs. Taken together, these data suggest that anergic T cells function as suppressor cells by inhibiting Ag presentation by DC via a cell contact-dependent mechanism.  相似文献   

12.
Differentiation of stem cells is tightly regulated by the microenvironment which is mainly composed of nonparenchymal cells. Herein, we investigated effect of hepatic stellate cells (HSCs) in different states on mesenchymal stem cells (MSCs) differentiation. Rat HSCs were isolated and stayed quiescent within 5 days. Primary HSCs were activated by being in vitro cultured for 7 days or cocultured with Kupffer cells for 5 days. MSCs were cocultured with HSCs of different states. Expression of hepatic lineage markers was analyzed by RT-PCR and immunofluorescence. Glycogen deposition was detected by periodic acid-schiff staining. MSCs cocultured with HSC-T6 or Kupffer cell activated HSCs were morphologically transformed into hepatocyte-like cells. Hepatic-specific marker albumin was expressed in 78.3% of the differentiated MSCs 2 weeks after initiation of coculture. In addition, the differentiated MSCs also expressed alpha-fetoprotein, cytokeratin-18, glutamine synthetase and phosphoenolpyruvate carboxykinase. Glycogen deposition was detectable in 55.4% of the differentiated MSCs 6 weeks after initiation of coculture. However, the quiescent HSCs or culture activated HSCs did not exert the ability to modulate the differentiation of MSCs. Moreover, Kupffer cell activated HSCs rather than culture activated HSCs expressed hepatocyte growth factor mRNA. We draw the conclusion that fully activated HSCs could modulate MSCs differentiation into hepatocyte-like cells.  相似文献   

13.
The production of mature spermatozoa requires a complex interaction between Sertoli cells and germ cells. Sertoli cells regulate aspects of germ cell division and differentiation while germ cells provide signals that modulate Sertoli cell functions. Germ cells can undergo some differentiation independent of Sertoli cells but at certain crucial points the interaction with Sertoli cells is required. There are several means by which this interaction may occur: (1) direct contact of components of the plasma membrane may act as a signal; (2) secondary messengers could be exchanged via gap junctions; (3) the secretion of paracrine factors may facilitate intercellular communication.  相似文献   

14.
Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm   总被引:3,自引:0,他引:3  
The immune system has developed mechanisms to detect and initiate responses to a continual barrage of immunological challenges. Dendritic cells (DC), a heterogeneous population of leucocytes, play a major role as immunosurveillance agents. To accomplish this function, DC are equipped with highly efficient mechanisms to detect pathogens, to capture, process and present antigens, and to initiate T-cell responses. These mechanisms are developmentally regulated during the DC life cycle in a process termed 'maturation', which was originally defined using Langerhans cells (LC), a DC type of the epidermis. LC exist in the skin in an immature state dedicated to capturing antigens, and in the subcutaneous lymph nodes in a mature state dedicated to presenting those antigens to T cells. The phenotypic changes undergone by LC during maturation, and the correlation of these changes with tissue localization, have been generally considered a paradigm for all DC. However, studies of the multiple DC types found in the lymphoid organs of mice and humans have revealed that most DC subsets do not follow the life cycle typified by LC. In this review we discuss the limitations of the 'LC paradigm' and suggest that this model should be revised to accommodate the heterogeneity of the DC system. We also discuss the implications of the maturational status of the DC subsets contained in the lymphoid organs for their putative roles in the induction of immune responses and the maintenance of peripheral tolerance.  相似文献   

15.
Formation of a theca cell (TC) layer is an important physiologic event that occurs during early follicular development. Nevertheless, little is known concerning the nature and regulation of the formation of the TC layer during follicular growth. Using an established coculture system in this study, we examined the hypothesis that stromal cells differentiate into TCs during early follicular development and that this process involves interaction with granulosa cells (GCs). Ovarian stromal cells from the bovine ovarian cortex (S(C)) and medulla (S(M)) were cultured with or without GCs from small antral follicles. The presence of GCs increased the number of lipid droplets and mitochondria, and it stimulated androstenedione production in S(C) and S(M). However, luteinizing hormone/choriogonadotropin receptor (LHCGR) mRNA abundance and hCG-induced cAMP and androstenedione production were increased in S(C) but not in S(M) by the presence of GCs. The present results indicate that GCs are involved in the functional differentiation and the acquisition of LH responsiveness in stromal cells of the ovarian cortex. We suggest that GC-S(C) interaction is important in the formation of the TC layer during early follicular development, although the nature of this interaction remains to be determined.  相似文献   

16.
Recent phylogenetic studies have implied that all plants able to enter root nodule symbioses with nitrogen-fixing bacteria go back to a common ancestor (D.E. Soltis, P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd, and P.G. Martin, Proc. Natl. Acad. Sci. USA, 92:2647-2651, 1995). However, nodules formed by plants from different groups are distinct in nodule organogenesis and structure. In most groups, nodule organogenesis involves the induction of cortical cell divisions. In legumes these divisions lead to the formation of a nodule primordium, while in non-legumes they lead to the formation of a so-called prenodule consisting of infected and uninfected cells. Nodule primordium formation does not involve prenodule cells, and the function of prenodules is not known. Here, we examine the differentiation of actinorhizal prenodule cells in comparison to nodule cells with regard to both symbionts. Our findings indicate that prenodules represent primitive symbiotic organs whose cell types display the same characteristics as their nodule counterparts. The results are discussed in the context of the evolution of root nodule symbioses.  相似文献   

17.
Plant cells are capable of reversible transition from the proliferating to the stem state. This transition is determined by a system of cell-cell interactions and interelationships between plant parts. Stem cells defined as the cells preserving the capacity to divisions and differentiation for a long time arise repeatedly during development of the root and shoot primordial, rather than are clones of a population of stem cells laid down at a certain stage of embryogenesis. The quiescent center cells, rather than the surrounding actively dividing cells, best correspond to the characteristics of stem cells according to Loeffler and Potten. The factors that determine the quiescent center formation and maintenance in the root have been analyzed. The available data suggest that among these factors, indoleacetic acid transport and cap influence are of paramount significance. The cap formation precedes the quiescent center formation both during the root development and in the course of meristem regeneration after the root decapitation. The capacity of stem cell formation by the meristem suggests that not only meristem arises from the stem cells, but also that stem cells are formed from actively dividing cells. Repeated formation of stem cells allows long-term preservation of the capacity of plants for open morphogenesis and vegetative propagation.  相似文献   

18.
Peritoneal exudate cells (PEC) have long been used as antigen presenting cells (APC), because they have been considered to contain mainly macrophages. However, it is still unclear specifically which cells of the peritoneal exudate function as APC. Herein, we focused on macrophages and B1-B cells of the PEC and examined their APC function and cytokine production. B1-B cells purified from PEC functioned effectively as APC after CpG-stimulation and mainly produced IL-10. In contrast, macrophages purified from PEC were not able to present incorporated antigens to T cells, despite the production of IL-12 and expression of co-stimulatory molecules after CpG stimulation. These results suggest that previously held ideas regarding the functions of the mixture of cells in the PEC need to re-evaluated. In summary, the antigen presenting function of PEC was mainly attributed to B1-B cells and immunoenhancing cytokine production was dominantly derived from peritoneal macrophages.  相似文献   

19.
Ivanov VB 《Ontogenez》2007,38(6):406-419
Plant cells are capable of reversible transition from the proliferating to the stem state. This transition is determined by a system of cell-cell interactions and interrelationships between plant parts. Stem cells defined as the cells preserving the capacity to divisions and differentiation for a long time arise repeatedly during development of the root and shoot primordial, rather than are clones of a population of stem cells laid down at a certain stage of embryogenesis. The quiescent center cells, rather than the surrounding actively dividing cells, best correspond to the characteristics of stem cells according to Loeffler and Potten. The factors that determine the quiescent center formation and maintenance in the root have been analyzed. The available data suggest that among these factors, indoleacetic acid transport and cap influence are of paramount significance. The cap formation precedes the quiescent center formation both during the root development and in the course of meristem regeneration after the root decapitation. The capacity of tem cell formation by the meristem suggests that not only meristem arises from the stem cells, but also that stem cells are formed from actively dividing cells. Repeated formation of stem cells allows long-term preservation of the capacity of plants for open morphogenesis and vegetative propagation.  相似文献   

20.
We have investigated the role of mast cells as modulators of lymphocyte function because the mast cells are concentrated in the areas of lymphoid storage; they are dependent upon T-cell growth factor for their proliferation; and they appear to be the principle if not sole storage site for histamine. We have tested the influence of mast cells on the proliferation of alloreactive cloned helper T cells, mixed leukocyte reactions, and the suppressive capacity of natural suppressor cells. We used an IL-3-dependent mast cell line that at high numbers (greater than 10(5)) suppressed and at low numbers (10(3) to 6 X 10(4)) augmented the proliferation of TH cells. Addition of histamine to cocultures enhanced the mast cell mediated proliferation of TH cells without directly affecting the helper cells. The action of histamine appeared to be mediated with H1 type receptors on these mast cells. Pretreatment of natural suppressor cells with supernatants from mast cell enhanced their suppressive capability. Here too, histamines enhanced suppression by the NS cell via histamine type 1 receptors on the natural suppressor cells. Our data suggest that mast cells may be a major modulator of the lymphoid cell immune function and demonstrate a role of histamine type 1 receptors in the interaction between mast cells, helper T cells, and natural suppressor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号