首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To confirm whether allopolyploidy occurs in samples of previously identified Porphyra yezoensis Ueda, P. tenera Kjellm., and P. yezoensis × P. tenera from natural and cultivated populations, we examined these samples by using PCR‐RFLP and microsatellite analyses of multiple nuclear and chloroplast regions [nuclear regions: type II DNA topoisomerase gene (TOP2), actin‐related protein 4 gene (ARP4), internal transcribed spacer (ITS) rDNA and three microsatellite loci; chloroplast region: RUBISCO spacer]. Except for the ITS region, these multiple nuclear markers indicated that the wild strain MT‐1 and the cultivated strain 90‐02 (previously identified as P. yezoensis × P. tenera and cultivated P. tenera, respectively) are heterozygous and possess both genotypes of P. tenera and P. yezoensis in the conchocelis phase. Furthermore, gametophytic blades of two pure lines, HG‐TY1 and HG‐TY2 (F1 strains of MT‐1 and 90‐02, respectively), were also heterozygous, and six chromosomes per single cell could be observed in each blade of the two pure lines. These results demonstrate that allopolyploidy occurs in Porphyra strains derived from both natural and cultivated populations, even though ITS genotypes of these strains showed homogenization toward one parental ITS.  相似文献   

2.
Porphyra tenera Kjellman, widely cultivated in nori farms before the development of artificial seeding, is currently listed as an endangered species in Japan. To confirm whether a wild‐collected gametophytic blade was P. tenera or the closely related species P. yezoensis Ueda, morphological observations and molecular analyses were made on the pure line HGT‐1 isolated from a wild blade. This pure line was identified as P. tenera based on detailed morphological features. Sequences of the nuclear internal transcribed spacer region 1 and the plastid RUBISCO spacer revealed that P. tenera HGT‐1 was clearly different from P. yezoensis f. narawaensis Miura, the main species cultivated in Japan. PCR‐RFLP analysis of the internal transcribed spacer region was found to be a convenient method for rapid discrimination between P. tenera and cultivated P. yezoensis. The restriction patterns generated by the endonucleases Dra I and Hae III were useful for differentiating between both gametophytic and conchocelis stages of P. tenera HGT‐1 and P. yezoensis f. narawaensis strains. Thus, PCR‐RFLP analysis will serve as a valuable tool for rapid species identification of cultivated Porphyra strains, culture collections of Porphyra strains for breeding material and conservation of biodiversity, and, as codominant cleaved amplified polymorphic sequence markers for interspecific hybridization products between P. tenera and P. yezoensis f. narawaensis. Under the same culture conditions, rate of blade length increase and the blade length‐to‐width ratio were lower in P. tenera HGT‐1 than in P. yezoensis f. narawaensis HG‐4. The HGT‐1 became mature more rapidly than HG‐4 and had thinner blades.  相似文献   

3.
We performed interspecific hybridization in the haploid blade‐forming marine species (nori) of the genus Porphyra, which have a heteromorphic life cycle with a haploid gametophytic blade and a diploid microscopic sporophyte called the “conchocelis phase.” The green mutant HGT‐6 of P. tenera var. tamatsuensis A. Miura was crossed with the wildtype HG‐1 of P. yezoensis f. narawaensis A. Miura; the F1 heterozygous conchocelis developed normally and released numerous conchospores. However, almost all the conchospore germlings did not survive past the four‐cell stage or thereabouts, and only a few germlings developed into gametophytic blades. These results indicate that hybrid breakdown occurred during the meiosis, while the surviving F1 gametophytic blades were considered a breakthrough in the interspecific hybridization of Porphyra. Organelle genomes (cpDNA and mtDNA) were found to be maternally inherited in the interspecific hybridization by molecular analyses of the organelle DNA. In particular, molecular analyses of nuclear DNA revealed that the surviving F1 blades were allodiploids in the haploid gametophytic phase; however, there is a possibility of the occurrence of rapid chromosomal locus elimination and rearrangement in the F1 conchocelis phase. Our findings are noteworthy to the breeding of cultivated Porphyra and will provide important information for understanding of the speciation of marine plants with high species diversity.  相似文献   

4.
Polymerase chain reaction restriction fragment length polymorphism (PCR‐RFLP) analysis of the plastid ribulose‐1,5‐bisphosphate carboxylase (RuBisCo) spacer region was developed for a more reliable and rapid species identification of cultivated Porphyra in combination with PCR‐RFLP analysis of the nuclear internal transcribed spacer (ITS) region. From the PCR‐RFLP analyses of the plastid and nuclear DNA, we examined seven strains of conchocelis that were used for cultivation as Porphyra tenera Kjellman but without strict species identification. The PCR‐RFLP analyses suggested that two strains, C‐32 and 90‐02, were cultivated P. tenera and that the other five strains, C‐24, C‐28, C‐29, C‐30 and M‐1, were Porphyra yezoensis f. narawaensis Miura. To identify species more accurately and to reveal additional genetic variation, the two strains C‐32 and 90‐02 were further studied by sequencing their RuBisCo spacer and ITS‐1 regions. Although RuBisCo spacer sequences of the two strains were identical to each other, each of their ITS‐1 sequences showed a single substitution. The sequence data again confirmed that the two strains (C‐32 and 90‐02) were cultivated P. tenera, and suggested that the two strains showed some genetic variation. We concluded that PCR‐RFLP analysis of the plastid and nuclear DNA is a powerful tool for reliable and rapid species identification of many strains of cultivated Porphyra in Japan and for the collection of genetically variable breeding material of Porphyra.  相似文献   

5.
In order to extract DNA rapidly from cultivated Porphyra, we extracted total DNA from conchocelis using the ISOPLANT II kit (Nippon Gene) without liquid nitrogen treatment or CsCl-gradient ultracentrifugation. By confirming the reproducibility of RAPD patterns, it is concluded that the quality of the extracted DNA is sufficient to use as a template for molecular investigation. Using this rapid method, the nuclear ribosomal DNA of the internal transcribed spacer (ITS) regions was amplified from seven strains of cultivated Porphyra, which had been maintained as free-living conchocelis by subculturing in the laboratory. From the amplified DNAs, the ITS-1 sequences were determined in order to identify the species and genetic relationship of the strains. The sequences were identical in the seven strains, and all the strains were identified as P. yezoensis. Furthermore, the gametophytic blades of these strains showed long linear or oblanceolate shapes in the laboratory culture. It was concluded that these strains are P. yezoensis form. narawaensis. This rapid DNA extraction method from conchocelis will be a powerful tool for phylogenetic analysis and for genetic improvement of cultivated Porphyra.  相似文献   

6.
We compared the wild Porphyra strain OGATSU from northeastern Japan with cultivated Porphyra yezoensis f. narawaensis using the RuBisCO spacer, rbcL, and ITS-1 DNA sequences as well as early gametophyte development. Based on the molecular analyses and detailed morphological observations, OGATSU was identified as P. yezoensis, but also revealed important differences from the cultivated form. Under the same culture conditions, gametophytic blades of OGATSU produced more archeospores than P. yezoensis f. narawaensis strain HG-4. The length of blades and their length-to-width ratios were significantly lower in OGATSU than in HG-4, and the color of OGATSU blades was darker than that of HG-4. The first lateral cell division in conchospore germlings occurred significantly earlier in the OGATSU strain than in the HG-4 strain, resulting in the rounder shape of the OGATSU blade compared to that of P. yezoensis f. narawaensis. These results suggested that wild strains such as OGATSU can provide useful characters that could enhance cultivated varieties in a careful breeding program.  相似文献   

7.
It is essential for successful Porphyra breeding to understand the growth characteristics and the quantitative aspect of the taste of gametophytic blades. However, there have been only a few studies on such characteristics with the progression of the number of harvests in nori farms. In this study we examined the changes of blade shape, blade thickness and free amino acid (FAA) content of two P. yezoensis f. narawaensis pure lines (HG-4 and HG-5) with the progression of the number of harvests in a nori farm. With the progression of the number of harvests, the blade length-to-width ratio of both pure lines decreased, while the blade thickness increased. From the results, it is suggested that the increase of blade length is significantly higher in HG-4 than in HG-5, and that the blade is thicker in HG-5 than in HG-4. Total FAA contents between the two lines were not significantly different throughout the investigation period. Among the major four FAA (aspartic acid, glutamic acid, alanine and taurine), only glutamic acid content decreased with the progression of the number of harvests in both pure lines. These results suggest that the superior taste of dried nori sheets made of the first harvest of blades is due to thinner blades and higher content of glutamic acid.  相似文献   

8.
We investigated the genetic variations of the samples that were tentatively identified as two cultivated Porphyra species (Porphyra yezoensis Ueda and Porphyra tenera Kjellm.) from various natural populations in Japan using molecular analyses of plastid and nuclear DNA. From PCR‐RFLP analyses using nuclear internal transcribed spacer (ITS) rDNA and plastid RUBISCO spacer regions and phylogenetic analyses using plastid rbcL and nuclear ITS‐1 rDNA sequences, our samples from natural populations of P. yezoensis and P. tenera showed remarkably higher genetic variations than found in strains that are currently used for cultivation. In addition, it is inferred that our samples contain four wild Porphyra species, and that three of the four species, containing Porphyra kinositae, are closely related to cultivated Porphyra species. Furthermore, our PCR‐RFLP and molecular phylogenetic analyses using both the nuclear and plastid DNA demonstrated the occurrence of plastid introgression from P. yezoensis to P. tenera and suggested the possibility of plastid introgression from cultivated P. yezoensis to wild P. yezoensis. These results imply the importance of collecting and establishing more strains of cultivated Porphyra species and related wild species from natural populations as genetic resources for further improvement of cultivated Porphyra strains.  相似文献   

9.
To discriminate between cultivated Porphyra species (Porphyra yezoensis and Porphyra tenera) and closely related wild Porphyra species, we developed a polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis of the rbcL gene using five restriction enzymes. Although our previous PCR‐RFLP analyses of internal transcribed spacer (ITS) rDNA and plastid RuBisCO spacer regions could not always discriminate wild P. yezoensis, wild P. tenera, and closely related wild species, the PCR‐RFLP profiles of the rbcL gene were useful in discriminating samples collected from natural habitats. Therefore, PCR‐RFLP analysis of the rbcL gene will help in the simple identification of a large number of samples, not only for the establishment of reliable cultures as breeding material, but also for the taxonomic investigations of species that are closely related to cultivated Porphyra.  相似文献   

10.
Nine primary regenerants were recovered by interspecific protoplast fusion of Porphyra yezoensis Ueda T‐14 (Py) (cultivated Porphyra) and Porphyra tenuipedalis Miura (Pt). This combination is difficult to achieve with conventional sexual hybridization, yet is important in that non‐cultivated P. tenuipedalis is partially resistant (PR) to red rot disease, caused by the microbial pathogen, Pythium porphyrae Takahashi et Sasaki. Out of the nine primary regenerants, two strains (Py‐Pt‐4 and Py‐Pt‐7) were like the parent, P. tenuipedalis, while the rest were like the other cultivated parent P. yezoensis T‐14 in their life cycle. Red rot resistance was assessed in parents and interspecific fusion product progeny (FPP) by exposing the foliose thalli to equivalent infection and measuring two parameters of the host‐pathogen interactions: supported fungal biomass and amount of disease produced. Intermediate resistance between P. yezoensis T‐14 (1.00) and P. tenuipedalis (0.13) was observed in two of the Py‐type FPP, Py‐Pt‐2F2 (0.25) and Py‐Pt‐5F2 (0.23). Stable inheritance of resistance was observed through two subsequent generations. The morphologic and reproductive characteristics of the regenerated foliose thalli, and nature of host‐pathogen interactions were used to further verify the hybrid origin of the FPP. Host‐pathogen interactions were followed using epi‐fluorescence and scanning electron microscopy (SEM). The zoospores encysted at higher rates on the susceptible cultivated parent (P. yezoensis T‐14) germinated immediately and the short germ tubes formed appres‐soria and penetrated the algal cells near the site of encystment. While on the PR parental (P. tenuipedalis) and partially resistant FPP (PRFPP) progeny (Py‐Pt‐2F2 and Py‐Pt‐5F2) the low rate of zoospore encystment was followed by cyst germination, but only a few of the germ tubes formed appressoria and penetrated the thallus surface. Long germ tubes (with no appressoria) were seen growing on the thallus surface without host penetration. The minimal rate of encystment concomitant with low rate of appressorium formation on the PR parent and PRFPP was observed as the major factor responsible for the partial resistance in these thalli.  相似文献   

11.
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Four areas containing different cell morphologies were mapped on Porphyra blades and five different cell types (i.e. tapered with long extensions, large and vacuolated, vegetative and dividing, and reproductive: males and females) were identified in them. Tissues from these areas were dissociated, and protoplasts and single cells were isolated from the dissociated tissue of each distinct region. Regeneration rates of the isolated cells and protoplasts (isolates) varied depending on their morphological type. Regeneration rates were lowest in cultured isolates from the area just above the holdfast (ca. 1 %) and increased gradually to over 80% in isolates from areas of vegetative and reproductive regions away from the holdfast. Four distinct morphological patterns were observed among the regenerating plants. Cells isolated from vegetative areas developed into leafy plants while in liquid culture, and into calli when grown on solid medium. Isolates from reproductive areas developed into either a long thin or short thick filamentous plant. Those from ripe patches of carposporangia developed into thin conchocelis filaments, while isolates from non-differentiated cells bordering the ripe reproductive patches developed into thick filaments resembling the morphology of conchosporangial branches. The blade of Porphyra appears simple as it consists of a single cell layer; however, it is complex both morphologically and physiologically.  相似文献   

13.
Free amino acid contents in green mutant(G-1) blades and sectored F1gametophytic blades with green andwild-type portions, which were developedfrom heterozygous conchocelis obtained by across between the wild type (0110) and thegreen mutant (G-1) of Porphyrayezoensis, were compared with those of thewild-type blades in laboratory culture. The contents of the major four free aminoacids (aspartic acid, glutamic acid,alanine and taurine) as well as those ofthe total free amino acids were highest inthe green mutant blades, intermediate inthe F1 gametophytic blades, and lowestin the wild-type blades. A similar trendwas obtained in the blades developed frommonospores of the F1 gametophyticblades. In addition, the green-typesectors also had a higher content of thefour major free amino acids and total freeamino acids compared with the wild-typesectors in the F1 blades cultivated ata nori farm. The green mutant ischaracterized by higher contents of thefour major free amino acids compared withthe wild type, which has a higher growthrate. Hence, it is considered that thesectored F1 gametophytic bladesproduced from the heterozygous conchocelishave both parental advantages (high freeamino acid contents and high growth rate)and compensate for both parentaldisadvantages. This seems to be one of thepossible ways of genetic improvement inregards to the taste of nori and stableproduction in Porphyra cultivation.  相似文献   

14.
The simple sequence repeat (SSR) marks were employed to identify the stage at which meiosis occurs in the life cycle of Porphyra haitanensis T. J. Chang et B. F. Zheng. More than 90% of F1 blades of heterozygous conchocelis produced by the cross between a red mutant (R, ♀) and the wildtype (W, ♂) were color sectored. Two parental colors (R and W) and two new colors (R′ and W′) appeared in linear sectors in the color‐sectored F1 blades. Two SSR primer pairs selected from a total of 52 primer pairs generated a specific paternal and maternal fragment, respectively. Co‐occurrence of these two bands was detected in heterozygous conchocelis and in the color‐sectored F1 blades with two to four sectors, such as R + W, R′ + W′, and R′ + R + W + W′. However, the single‐colored F1 blades exhibited only one band. In the sectors isolated from the color‐sectored F1 blades, R and R′ were the same, showing the maternal pattern, whereas W and W′ were the same, showing the paternal pattern. These data suggested that the two different bands from heterozygous conchocelis originated from the parents and segregated in the F1 blades, whereas the two new colors, R′ and W′, in the F1 blades were produced by the exchange and recombination of alleles of the parental colors during meiosis. These results indicated that meiosis of P. haitanensis occurs during the first two cell divisions of a germinating conchospore, and, therefore, the initial four cells constitute a linear genetic tetrad, leading to the formation of a color‐sectored blade.  相似文献   

15.
The ultrastructure of zygotosporogenesis is described for the red alga Porphyra leucosticta Thuret. Packets of eight zygotosporangia, each packet derived from a single carpogonium are interspersed among vegetative cells. Zygotospore differentiation in Porphyra can be separated into three developmental stages. (i) Young zygotospores exhibit a nucleus and a large centrally located, lobed plastid with pyrenoid. Mucilage is produced within concentric membrane structures during their dilation, thus resulting in the formation of mucilage sacs. Subsequently, these sacs release their contents, initiating the zygotospore wall formation. Straight‐profiled dictyosomes produce vesicles that also provide wall material. During the later stages of young zygotospores, starch polymerization commences, (ii) Medium‐aged zygotospores are characterized by the presence of fibrous vacuoles. These are formed from the ‘fibrous vacuole associated organelles’. The fibrous vacuoles finally discharge their contents. (iii) Mature zygotospores are recognized by the presence of numerous cored vesicles produced by dictyosomes. Cored vesicles either discharge their contents or are incorporated into the fibrous vacuoles. There is a gradual reduction of starch granules during zygotospore differentiation. Mature zygotospores are surrounded by a fibrous wall, have a large chloroplast with pyrenoid and well‐depicted phycobilisomes but are devoid of starch granules.  相似文献   

16.
Pigment mutants were used as genetic markers to study the early development and morphogenesis of blades in four species of Porphyra. In Porphyra haitanensis, P. yezoensis, and P. oligospermatangia, the first two divisions are transverse during conchospore germination, yielding four cells arranged in a line. These species are representative of linear development pattern in Porphyra. Resulting in blades with color sectors vertically arranged. In P. katadai var. hemiphylla, the first division is transverse and the upper cell divides vertically forming two side-by-side cells, and its blades are derived mostly from the upper cell showing a bilateral development pattern with two lateral parts of different colors. In this type of germination, most or the entire blade is derived from the upper cells. Some fronds of P. katadai var. hemiphylla developed in linear pattern. In addition, 9.3% of the conchospore germlings of linear development were produced at 10°C, 15.3% at 15°C, and 38.0% at 20°C for conchospore germlings of P. katadai var. hemiphylla. More linear development occurred at higher temperatures. The results revealed general trends of early developmental patterns and morphogenesis of blades within the genus of Porphyra. Developmental patterns and morphogenesis of blades are under the influence of temperatures.  相似文献   

17.
Restriction site amplified polymorphism (RSAP) is a molecular marker technique which just requires a simple polymerase chain reaction to amplify fragments around restriction sites. The RSAP analytic system was set up and applied to Porphyra genetic variation analysis in this study for the first time. Fourteen Porphyra lines were screened by the RSAP analytic system with 30 primer combinations, 12 of which produced stable and reproducible amplification patterns in three repeated experiments. The 12 primer combinations produced 408 amplified fragments, 402 of which (98.53%) were polymorphic, with an average of 33.5 polymorphic fragments for each primer combination, ranging in size from 50 to 500 bp. The 408 fragments were scored one by one and then used to develop a dendrogram of the 14 Porphyra lines with unweighted pair-group method arithmetic average. The genetic distance among these Porphyra lines ranged from 0.10 to 0.50. These Porphyra lines were divided into two major groups at the 0.71 similarity level: one group contained only Porphyra haitanensis lines and the other group contained Porphyra yezoensis lines. In addition, some specific RSAP markers were acquired from each Porphyra line apart from P. yezoensis Yqd-2-1, and five of them were sequenced. One of the specific markers, R1/R3-8119 from P. yezoensis Y-9101, was successfully converted into sequence characterized amplification region marker. The result suggested that TRAP was a simple, stable, polymorphic, and reproducible molecular marker technique for the classification and resource protection of Porphyra lines.  相似文献   

18.
19.
Protoplasts isolated from thalli of four Porphyra species regenerated successfully into differentiated plantlets. The efficiency of protoplast isolation and the developmental patterns of the regenerating protoplasts depended on the type of tissues from which they were isolated. However, culture conditions greatly influenced the patterns of development at the cellular and organismal levels. Sorbitol, nitrogen, and agar concentration in the medium controlled rates of cell division, thickening of cell walls, development of rhizoids, and formation of calluses or differentiated blades. Agitation disturbed the attachment of the protoplasts to a substrate. Cells in agitated cultures produced suspensions of single cells and non-polarized small calluses. Calluses which developed from protoplasts survived in storage for over two years. The stored calluses, and cells and protoplasts that were isolated from them, were subcultured successfully. We forsee extensive use of Porphyra cell suspensions for strain selection and vegetative propagation of cultivars. This technology, which makes vegetative cloning of selected Porphyra plants possible, may eliminate the need for cultivation and storage of the conchocelis phase. Protoplasts are also being used as tools for studies in genetic engineering of these commercial species.  相似文献   

20.
Porphyra haitanensis (T. J. Chang & B. F. Zheng) is an important economic alga found off the southern coast of China. It has evolved a strong tolerance against stress, which is an important survival characteristic. Cyclophilin has been shown to be involved in the stress response of plants and algae. To investigate the tolerance against stress in Porphyra, we isolated the cyclophilin PhCYP18 gene (Accession number JQ413239 ) and measured its expression over different generations and stress conditions. In P. haitanensis, cyclophilin PhCYP18 accumulated more in the filamentous sporophyte generation than in the blade gametophyte generation. This difference was thought to be due to harsh environments and a gene dosage effect. It has been found, however, that PhCYP18 expression was dysregulated in blades under high salt stress, strong irradiance stress and multifactorial stress compared to blades under normal conditions. Moreover, the changes were not linearly related to the degree of stress. It was therefore thought that PhCYP18 actively responded to stress situations and induced strong stress tolerance, which is evident in P. haitanensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号