首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biotin synthase (BioB), an iron-sulfur enzyme, catalyzes the last step of the biotin biosynthesis pathway. The reaction consists in the introduction of a sulfur atom into two non-activated C-H bonds of dethiobiotin. Substrate radical activation is initiated by the reductive cleavage of S-adenosylmethionine (AdoMet) into a 5'-deoxyadenosyl radical. The recently described pyridoxal 5'-phosphate-bound enzyme was used to show that only one molecule of AdoMet, and not two, is required for the formation of one molecule of biotin. Furthermore 5'-deoxyadenosine, a product of the reaction, strongly inhibited biotin formation, an observation that may explain why BioB is not able to make more than one turnover. However this enzyme inactivation is not irreversible.  相似文献   

2.
The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and M?ssbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S](2+) cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O(2). The other site accommodates a [4Fe-4S](2+,+) cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S](2+) cluster and undergoes O(2)-induced degradation via a distinct type of [2Fe-2S](2+) cluster intermediate. In vivo M?ssbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S](2+) cluster and demonstrate that the [2Fe-2S](2+) cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O(2)-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S](2+) cluster as the immediate S-donor for biotin biosynthesis.  相似文献   

3.
A mechanism of the C―S bond activation of S-adenosylmethionine (SAM) in biotin synthase is discussed from quantum mechanical/molecular mechanical (QM/MM) computations. The active site of the enzyme involves a [4Fe-4S] cluster, which is coordinated to the COO and NH2 groups of the methionine moiety of SAM. The unpaired electrons on the iron atoms of the [4Fe-4S]2+ cluster are antiferromagnetically coupled, resulting in the S = 0 ground spin state. An electron is transferred from an electron donor to the [4Fe-4S]2+-SAM complex to produce the catalytically active [4Fe-4S]+ state. The SOMO of the [4Fe-4S]+-SAM complex is localized on the [4Fe-4S] moiety and the spin density of the [4Fe-4S] core is calculated to be 0.83. The C―S bond cleavage is associated with the electron transfer from the [4Fe-4S]+ cluster to the antibonding σ* C―S orbital. The electron donor and acceptor states are effectively coupled with each other at the transition state for the C―S bond cleavage. The activation barrier is calculated to be 16.0 kcal/mol at the QM (B3LYP/SV(P))/MM (CHARMm) level of theory and the C―S bond activation process is 17.4 kcal/mol exothermic, which is in good agreement with the experimental observation that the C―S bond is irreversibly cleaved in biotin synthase. The sulfur atom of the produced methionine molecule is unlikely to bind to an iron atom of the [4Fe-4S]2+ cluster after the C―S bond cleavage from the energetical and structural points of view.  相似文献   

4.
Uptake of exogenous biotin by two Escherichia coli biotin prototroph strains, K-12 and Crookes, appeared to involve incorporation at a fixed number of binding sites located at the cell membrane. Incorporation was characterized as a binding process specific for biotin, not requiring energy, and stimulated by acidic pH. Constant saturation quantities of exogenous biotin were incorporated by these cells, and the amounts, which were titrated, depended on whether the cells were resting or dividing. Resting cells incorporated exogenous biotin amounting to 2% of their total intracellular biotin content. Fifty percent of the exogenous biotin was incorporated into their free biotin fraction, and 50% was incorporated into their bound biotin fraction. On the other hand, dividing cells incorporated exogenous biotin into all of their intracellular sites, 88% going into the intracellular-bound biotin fraction, and 12% going into the free biotin fraction. Calculations suggested that each cell contained approximately 3,000 binding sites for biotin. It was postulated that biotin incorporation sites might have been components of acetyl coenzyme A carboxylase located at or near the membrane.  相似文献   

5.
Taylor AM  Farrar CE  Jarrett JT 《Biochemistry》2008,47(35):9309-9317
Biotin synthase (BS) catalyzes the oxidative addition of a sulfur atom to dethiobiotin (DTB) to generate the biotin thiophane ring. This enzyme is an S-adenosylmethionine (AdoMet) radical enzyme that catalyzes the reductive cleavage of AdoMet, generating methionine and a transient 5'-deoxyadenosyl radical. In our working mechanism, the 5'-deoxyadenosyl radical oxidizes DTB by abstracting a hydrogen from C6 or C9, generating a dethiobiotinyl carbon radical that is quenched by a sulfide from a [2Fe-2S] (2+) cluster. A similar reaction sequence directed at the other position generates the second C-S bond in the thiophane ring. Since the BS active site holds only one AdoMet and one DTB, it follows that dissociation of methionine and 5'-deoxyadenosine and binding of a second equivalent of AdoMet must be intermediate steps in the formation of biotin. During these dissociation-association steps, a discrete DTB-derived intermediate must remain bound to the enzyme. In this work, we confirm that the conversion of DTB to biotin is accompanied by the reductive cleavage of 2 equiv of AdoMet. A discrepancy between DTB consumption and biotin formation suggests the presence of an intermediate, and we use liquid chromatography and mass spectrometry to demonstrate that this intermediate is indeed 9-mercaptodethiobiotin, generated at approximately 10% of the total enzyme concentration. The amount of intermediate observed is increased when the reaction is run with substoichiometric levels of AdoMet or with the defective enzyme containing the Asn153Ser mutation. The retention of 9-mercaptodethiobiotin as a tightly bound intermediate is consistent with a mechanism involving the stepwise radical-mediated oxidative abstraction of sulfide from an iron-sulfur cluster.  相似文献   

6.
The gene encoding Escherichia coli biotin synthase (bioB) has been expressed as a histidine fusion protein, and the protein was purified in a single step using immobilized metal affinity chromatography. The His(6)-tagged protein was fully functional in in vitro and in vivo biotin production assays. Analysis of all the published bioB sequences identified a number of conserved residues. Single point mutations, to either serine or threonine, were carried out on the four conserved (Cys-53, Cys-57, Cys-60, and Cys-188) and one non-conserved (Cys-288) cysteine residues, and the purified mutant proteins were tested both for ability to reconstitute the [2Fe-2S] clusters of the native (oxidized) dimer and enzymatic activity. The C188S mutant was insoluble. The wild-type and four of the mutant proteins were characterized by UV-visible spectroscopy, metal and sulfide analysis, and both in vitro and in vivo biotin production assays. The molecular masses of all proteins were verified using electrospray mass spectrometry. The results indicate that the His(6) tag and the C288T mutation have no effect on the activity of biotin synthase when compared with the wild-type protein. The C53S, C57S, and C60S mutant proteins, both as prepared and reconstituted, were unable to covert dethiobiotin to biotin in vitro and in vivo. We conclude that three of the conserved cysteine residues (Cys-53, Cys-57, and Cys-60), all of which lie in the highly conserved "cysteine box" motif, are crucial for [Fe-S] cluster binding, whereas Cys-188 plays a hitherto unknown structural role in biotin synthase.  相似文献   

7.
8.
The anaerobic ribonucleoside triphosphate reductase from Escherichia coli reduces CTP to dCTP in the presence of a second protein, named dA1, and a Chelex-treated boiled extract of the bacteria, named RT. The reaction requires S-adenosylmethionine, NADPH, dithiothreitol, ATP, and Mg2+ and K+ ions. It occurs only under anaerobic conditions. We now show that the overall reaction occurs in two steps. The first is an activation of the reductase by dA1 and RT and requires S-adenosylmethionine, NADPH, dithiothreitol, and possibly K+ ions. In the second step, the activated reductase reduces CTP to dCTP with ATP acting as an allosteric effector. During activation, S-adenosylmethionine is cleaved reductively to methionine + 5'-deoxyadenosine. This step is inhibited strongly by S-adenosylhomocysteine and various chelators. The activation of the anaerobic reductase shows a considerable similarity to that of pyruvate formate-lyase (Knappe, J., Neugebauer, F. A., Blaschkowski, H. P., and G?nzler, M. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1332-1335).  相似文献   

9.
Hewitson KS  Baldwin JE  Shaw NM  Roach PL 《FEBS letters》2000,466(2-3):372-376
Biotin synthase (BioB) is a member of a family of enzymes that includes anaerobic ribonucleotide reductase and pyruvate formate lyase activating enzyme. These enzymes all use S-adenosylmethionine during turnover and contain three highly conserved cysteine residues that may act as ligands to an iron-sulfur cluster required for activity. Three mutant enzymes of BioB have been made, each with one cysteine residue (C53, 57, 60) mutated to alanine. All three mutant enzymes were inactive, but they still exhibited the characteristic UV-visible spectrum of a [2Fe-2S]2+ cluster similar to that of the wild-type enzyme.  相似文献   

10.
Biotin protein ligases (BPLs) are enzymes of extraordinary specificity. BirA, the BPL of Escherichia coli biotinylates only a single cellular protein. We report a mutant BirA that attaches biotin to a large number of cellular proteins in vivo and to bovine serum albumin, chloramphenicol acetyltransferase, immunoglobin heavy and light chains, and RNAse A in vitro. The mutant BirA also self biotinylates in vivo and in vitro. The wild type BirA protein is much less active in these reactions. The biotinylation reaction is proximity-dependent in that a greater extent of biotinylation was seen when the mutant ligase was coupled to the acceptor proteins than when the acceptors were free in solution. This approach may permit facile detection and recovery of interacting proteins by existing avidin/streptavidin technology.  相似文献   

11.
12.
Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12   总被引:1,自引:0,他引:1  
The formation of radicals from carbon tetrachloride (CT) is often invoked to explain the product distribution resulting from its transformation. Radicals formed by reduction of CT presumably react with constituents of the surrounding milieu to give the observed product distribution. The patterns of transformation observed in this work were consistent with such a hypothesis. In cultures of Escherichia coli K-12, the pathways and rates of CT transformation were dependent on the electron acceptor condition of the media. Use of oxygen and nitrate as electron acceptors generally prevented CT metabolism. At low oxygen levels (approximately 1%), however, transformation of [14C]CT to 14CO2 and attachment to cell material did occur, in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, [14C]CT was recovered as 14CO2, chloroform, and a nonvolatile fraction. In contrast, fermenting conditions resulted in more chloroform, more cell-bound 14C, and almost no 14CO2. Rates of transformation of CT were faster under fermenting conditions than under fumarate-respiring conditions. Transformation rates also decreased over time, suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term.  相似文献   

13.
The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of L-cysteine in an in vitro reaction system. The NifU/S complex enhanced the production of biotin from dethiobiotin by the cells growing in an in vivo reaction system. Moreover, the IscS protein of E. coli stimulated the biotin synthase reaction in the presence of L-cysteine in the cell-free system. These results strongly suggest that cysteine desulfurase participates in the biotin synthase reaction, probably by supplying sulfur to the iron-sulfur cluster of biotin synthase.  相似文献   

14.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

15.
In Escherichia coli, biotin synthase (bioB gene product) catalyzes the key step in the biotin biosynthetic pathway, converting dethiobiotin (DTB) to biotin. Previous studies have demonstrated that BioB is a homodimer and that each monomer contains an iron-sulfur cluster. The purified BioB protein, however, does not catalyze the formation of biotin in a conventional fashion. The sulfur atom in the iron-sulfur cluster or from the cysteine residues in BioB have been suggested to act as the sulfur donor to form the biotin molecule, and yet unidentified factors were also proposed to be required to regenerate the active enzyme. In order to understand the catalytic mechanism of BioB, we employed an approach involving chemical modification and site-directed mutagenesis. The properties of the modified and mutated BioB species were examined, including DTB binding capability, biotin converting activity, and Fe(2+) content. From our studies, four cysteine residues (Cys 53, 57, 60, and 97) were assigned as the ligands of the iron-sulfur cluster, and Cys to Ala mutations completely abolished biotin formation activity. Two other cysteine residues (Cys 128 and 188) were found to be involved mainly in DTB binding. The tryptophan and histidine residues were suggested to be involved in DTB binding and dimer formation, respectively. The present study also reveals that the iron-sulfur cluster with its ligands are the key components in the formation of the DTB binding site. Based on the current results, a refined model for the reaction mechanism of biotin synthase is proposed.  相似文献   

16.
17.
Biotin synthase is required for the conversion of dethiobiotin to biotin and requires a number of accessory proteins and small molecule cofactors for activity in vitro. We have previously identified two of these proteins as flavodoxin and ferredoxin (flavodoxin) NADP(+) reductase. We now report the identification of MioC as a third essential protein, together with its cloning, purification, and characterization. Purified MioC has a UV-visible spectrum characteristic of a flavoprotein and contains flavin mononucleotide. The presence of flavin mononucleotide and the primary sequence similarity to flavodoxin suggest that MioC may function as an electron transport protein. The role of MioC in the biotin synthase reaction is discussed, and the structure and function of MioC is compared with that of flavodoxin.  相似文献   

18.
The Escherichia coli biotin operon repressor protein (BirA) has been overexpressed at the level of 0.5-1% of the total cellular protein from the plasmid pMBR10. Four lines of evidence demonstrated that authentic BirA protein was produced. First, birA plasmids complemented birA mutants for both the repressor and biotin holoenzyme synthetase activities of BirA. Second, biotin holoenzyme synthase activity was increased in strains containing the overproducing plasmids. Third, deletion of sequences flanking the birA gene did not alter production of the 35-kDa BirA protein, but insertion of oligonucleotide linkers within the birA coding region abolished it. Fourth, the 35-kDa protein copurified with the biotin binding activity normally associated with BirA. The birA protein has been purified to homogeneity in a three-step process involving chromatography on phosphocellulose and hydroxyapatite columns.  相似文献   

19.
D L Anton  R Kutny 《Biochemistry》1987,26(20):6444-6447
S-Adenosylmethionine decarboxylase, a pyruvoyl-containing decarboxylase, is inactivated in a time-dependent process under turnover conditions. The inactivation is dependent on the presence of both substrate and Mg2+, which is also required for enzyme activity. The rate of inactivation is dependent on the concentration of substrate and appears to be saturable. Inactivation by [methionyl-3,4-14C]-adenosylmethionine results in stoichiometric labeling of the protein. In contrast, when either S-[methyl-3H]adenosylmethionine or [8-14C]adenosylmethionine is used, there is virtually no incorporation of radioactivity. Automated Edman degradation of the alpha (pyruvoyl-containing) subunit reveals that substrate inactivation results in the conversion of the pyruvoyl group to an alanyl residue. These data suggest a mechanism of inactivation which involves the transamination of the nascent product to the pyruvoyl group, followed by the elimination of methylthioadenosine and the generation of a 2-propenal equivalent which could undergo a Michael addition to the enzyme. This is the first evidence for a transamination mechanism for substrate inactivation of a pyruvoyl enzyme.  相似文献   

20.
The formation of radicals from carbon tetrachloride (CT) is often invoked to explain the product distribution resulting from its transformation. Radicals formed by reduction of CT presumably react with constituents of the surrounding milieu to give the observed product distribution. The patterns of transformation observed in this work were consistent with such a hypothesis. In cultures of Escherichia coli K-12, the pathways and rates of CT transformation were dependent on the electron acceptor condition of the media. Use of oxygen and nitrate as electron acceptors generally prevented CT metabolism. At low oxygen levels (approximately 1%), however, transformation of [14C]CT to 14CO2 and attachment to cell material did occur, in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, [14C]CT was recovered as 14CO2, chloroform, and a nonvolatile fraction. In contrast, fermenting conditions resulted in more chloroform, more cell-bound 14C, and almost no 14CO2. Rates of transformation of CT were faster under fermenting conditions than under fumarate-respiring conditions. Transformation rates also decreased over time, suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号