首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of optimal concentrations of Mg2+, rates of activated (gapped) DNA-directed DNA synthesis by purified mammalian type C retroviral DNA polymerases are stimulated greater than 10-fold by the polyamines spermine and spermidine. Such stimulation was not observed using either similar concentrations of the polyamines cadaverine or putrescine or exogenously provided salt or ammonium ions. Avian type C as well as mammalian type B and type D retroviral DNA polymerases, in contrast to the mammalian type C enzyme, were found to be relatively insensitive to spermine and spermidine stimulation. Kinetic analysis of the polyamine stimulation of activated DNA-directed DNA synthesis carried out using spermine and purified Rauscher leukemia virus DNA polymerase revealed at least two distinct mechanisms of activation of DNA synthesis. 1) At DNA concentrations below 2.5 micrograms/ml, spermine appears to interact with the enzyme-DNA complex in order to stimulate synthesis. 2) At DNA concentrations above 2.5 micrograms/ml, increased spermine stimulation is observed which appears to be due to its direct interaction with the activated DNA template resulting in either selective limitation of the formation of "dead-end" enzyme-DNA complexes or its ability to convert such nonproductive enzyme binding sites into productive sites for the initiation of synthetic activity. The addition of spermine to reaction mixtures was found to increase both the apparent Km and Vmax of the activated (gapped) DNA-directed reaction with regard to template concentration.  相似文献   

2.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

3.
1. The two subunits alpha and beta of Halobacterium cutirubrum DNA-dependent RNA polymerase are required in equimolar amounts for RNA synthesis to occur in vitro at the maximum rate. 2. In the absence of bivalent cations no interaction occurs between alpha and beta subunits or between the subunits and DNA. 3. Mn(2+) causes the subunits to form a 1:1 complex that still does not bind to the template. 4. Mg(2+) permits binding of the Mn(2+)-mediated complex to DNA. 5. The complete enzyme, alphabeta, is inhibited by rifampicin and only the beta subunit relieves the inhibition when added in excess. 6. Rifampicin-insensitive, template-dependent RNA synthesis occurs in the presence of protein alpha alone provided an oligonucleotide with a 5'-purine terminus is supplied as primer. 7. In the primed reaction with the alpha protein and an oligonucleotide, the template specificity is independent of the ionic strength, in contrast with the marked effect of salt concentration on the template specificity of the complete enzyme. 8. It is concluded that the beta protein controls the specificity of chain initiation and the template specificity of the complete enzyme and also carries the rifampicin-binding site, whereas the catalytic site is on the alpha subunit.  相似文献   

4.
The interactions of calf thymus DNA polymerase alpha (pol alpha) with primer/templates were examined. Simply changing the primer from DNA to RNA had little effect on primer/template binding or dNTP polymerization (Km, Vmax and processivity). Surprisingly, however, adding a 5'-triphosphate to the primer greatly changed its interactions with pol alpha (binding, Vmax and Km and processivity). While changing the primer from DNA to RNA greatly altered the abilit of pol alpha to discriminate against nucleotide analogs, it did not compromise the ability of pol alpha to discriminate against non-cognate dNTPs. Thus the nature of the primer appears to affect 'sugar fidelity', without altering 'base fidelity'. DNase protection assays showed that pol alpha strongly protected 9 nt of the primer strand, 13 nt of the duplex template strand and 14 nt of the single-stranded template from hydrolysis by DNase I and weakly protected several bases outside this core region. This large DNA binding domain may account for the ability of a 5'-triphosphate on RNA primers to alter the catalytic properties of pol alpha.  相似文献   

5.
By forming a complex with calf thymus DNA, Cr(III), i.e., CrCl3 and Cr(NO3)3, significantly enhanced its template activity for in vitro RNA synthesis as assayed by 3H incorporation from [5-3H]uridine triphosphate (UTP). The extent of the augmentation in RNA synthesis was proportional to the binding ratio of Cr(III) to the template DNA. K2CrO4, on the other hand, neither bound to DNA nor enhanced its template activity. Experiments using rifampicin and heparin suggested that incorrect and nonviable initiation sites for RNA synthesis became functional in Cr(III)-bound DNA. The incorporation of [gamma-32P]adenosine triphosphate (ATP) into RNA synthesized on Cr(III)-bound DNA was 8 to 9 times greater than that on control DNA. This value was much higher than that of the 3H incorporation form [5-3H]UTP, i.e., the incorporation of 32P on Cr(III) bound DNA was 8 to 9 times greater that of 3H and less than twice that on control DNA. These results suggest that Cr(III) possibly induces the abnormal synthesis of RNA of a very low molecular weight, for most if not all the molecules, by binding to the template DNA.  相似文献   

6.
L Roberts  P Sadowski  J T Wong 《Biochemistry》1982,21(23):6000-6005
Bacteriophage T7 codes for a single-stranded DNA binding protein. This protein is the product of gene 2.5 and has been found previously to stimulate specifically the activity of the phage-coded DNA polymerase. We report here that the T7 DNA binding protein also stimulates the activity of the phage-coded exonuclease. The gene 6 exonuclease is a double-stranded DNA specific 5'-exonuclease that has been implicated in destruction of bacterial DNA, removal of RNA primers during DNA replication, genetic recombination, and DNA maturation. The enzyme is markedly inhibited by physiological concentrations of NaCl. This inhibition, which is due to a marked reduction in the Vmax of the enzyme, can be largely overcome by the phage-coded DNA binding protein. This stimulation is specific since the Escherichia coli DNA binding protein is without effect. The stimulation by the binding protein is apparently not due to its coating of the 3' single-stranded tails generated during the digestion. Kinetic studies show that the stimulation is due to a combined effect on both the Km and Vmax of the exonuclease. These studies are consistent with a loose binding of the binding protein to either the DNA or the exonuclease.  相似文献   

7.
The rate of initiation of RNA synthesis catalysed by yeast RNA polymerase A on native calf thymus DNA decayed exponentially with a half-life of about 4.3 min. The rate constant for initiation was unaffected by preincubating the enzyme with DNA, or by decreasing the concentration of GTP 4-fold. The rate of RNA synthesis was constant for 15--20 min and then decreased. Each enzyme molecule made no more than one RNA molecule. In this situation, initiation, elongation and total RNA synthesis are related by a convolution integral. Solution of the convolution integral revealed that the rate of elongation was apparently biphasic. Analysis of the size of the RNA product showed that this biphasic profile arose because most but not all of the enzyme stopped RNA synthesis soon after initiation.  相似文献   

8.
Factor D, a template-selective DNA polymerase-alpha stimulatory protein from mouse liver (Fry, M., Lapidot, J., and Weisman-Shomer, P. (1985) Biochemistry 24, 7549-7556) is shown here to enhance the activities of diverse DNA polymerases with a cognate template specificity. DNA synthesis catalyzed by Escherichia coli DNA polymerase I, avian myeloblastosis virus polymerase, and some mammalian alpha- and gamma-polymerases was increased by factor D. With every enhanced polymerase, factor D increased the rate of copying of only poly(dT) among various tested synthetic poly-deoxynucleotides. Of the natural DNA templates examined, rates of copying of sparsely primed denatured DNA and of singly primed circular phi X174 or M13 bacteriophage DNA, but not of activated DNA, were enhanced. Michaelis constants (Km) of affected templates with responsive polymerases were decreased by factor D, without alteration in maximum velocity (Vmax). By contrast, factor D increased Vmax of deoxyribonucleoside 5'-monophosphate incorporation without changing Km of deoxyribonucleoside 5'-triphosphate substrates. Binding of factor D to poly(dT), poly(dA).poly(dT), and DNA, but less to poly(dA), was indicated by specific retention of their complexes on a DEAE-cellulose column. That factor D does not bind to DNA polymerase-alpha or to its complex with the DNA template was demonstrated by the failure of the factor to be coprecipitated with alpha-polymerase by anti-polymerase-alpha monoclonal antibodies in either the absence or presence of various templates. Lack of binding of factor D to the polymerase molecule was also indicated by simultaneous maximum stimulation of two competing polymerases by a limiting amount of factor. These combined results suggest that the enhancement of DNA synthesis is exerted through interaction of factor D with the template. It is proposed that this association leads to a tighter binding of the polymerase to the template and facilitates DNA synthesis.  相似文献   

9.
1. The RNA-dependent RNA polymerase from Halobacterium cutirubrum was purified to electrophoretic homogeneity. 2. It requires a single-stranded molecule of RNA or polyribonucleotide as template. 3. Nearest-neighbour analyses of the products formed on random poly(A,U) or alternating poly(A-U) templates and base analysis of the product of synthesis directed by wheat-germ RNA prove that the template is copied accurately. 4. The enzyme initiates new chains with purine ribonucleoside triphosphates. 5. Sucrose-density-gradient analysis of the product indicates that it has a size distribution similar to that of the template. 6. Preliminary amino acid analysis of the RNA-dependent polymerase shows that it contains much less serine than either of the subunits of H. cutirubrum DNA-dependent RNA polymerase. 7. The RNA-dependent enzyme is unable to substitute for either subunit of the DNA-dependent polymerase, and both the latter are devoid of RNA-dependent activity.  相似文献   

10.
DNA polymerase insertion fidelity. Gel assay for site-specific kinetics   总被引:31,自引:0,他引:31  
A quantitative assay based on gel electrophoresis is described to measure nucleotide insertion kinetics at an arbitrary DNA template site. The assay is used to investigate kinetic mechanisms governing the fidelity of DNA synthesis using highly purified Drosophila DNA polymerase alpha holoenzyme complex and M13 primer-template DNA. Km and Vmax values are reported for correct insertion of A and misinsertion of G, C, and T opposite a single template T site. The misinsertion frequencies are 2 X 10(-4) for G-T and 5 X 10(-5) for both C-T and T-T relative to normal A-T base pairs. The dissociation constant of the polymerase-DNA-dNTP complex, as measured by Km, plays a dominant role in determining the rates of forming right and wrong base pairs. Compared with Km for insertion of A opposite T (3.7 +/- 0.7 microM), the Km value is 1100-fold greater for misinsertion of G opposite T (4.2 +/- 0.4 mM), and 2600-fold greater for misinsertion of either C or T opposite T (9.8 +/- 4.2 mM). These Km differences indicate that in the enzyme binding site the stability of A-T base pairs is 4.3 kcal/mol greater than G-T pairs and 4.9 kcal/mol greater than C-T or T-T pairs. In contrast to the large differences in Km, differences in Vmax are relatively small. There is only a 4-fold reduction in Vmax for insertion of G opposite T and an 8-fold reduction for C or T opposite T, compared with the correct insertion of A. For the specific template T site investigated, the nucleotide insertion fidelity for Drosophila polymerase alpha seems to be governed primarily by a Km discrimination mechanism.  相似文献   

11.
12.
13.
The properties of RNA polymerase A, which lacked the subunits of 48 000, 37 000 and 16 000 mol. wt., were compared with those of RNA polymerase A by using native calf thymus DNA as the template. The results showed that: (1) the specific activity of RNA polymerase A was about one-third that of RNA polymerase A; (2) more than 80% of RNA polymerase A, but only about 25% of RNA polymerase A, made RNA; (3) initiation by RNA polymerase A, but not by RNA polymerase A, began after a lag of 2 min; (4) the temperature-dependence for productive binding to DNA was greater for RNA polymerase A; (5) the apparent Km for UTP was greater for RNA polymerase A. These results support the supposition that the subunits missing from RNA polymerase A are involved in DNA binding [Huet, Dezélée, Iborra, Buhler, Sentenac & Fromageot (1976) Biochimie 58, 71-80] and show also that the loss of these subunits affects the elongation reaction.  相似文献   

14.
Initial rate kinetics of dextran synthesis by dextransucrase (sucrose:1,6-alpha-D-glucan-6-alpha-D-glucosyltransferase, EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F showed that below 1 mM, Ca2+ activated the enzyme by increasing Vmax and decreasing the Km for sucrose. Above 1 mM, Ca2+ was a weak competitive inhibitor (Ki = 59 mM). Although it was an activator at low concentration, Ca2+ was not required for dextran synthesis, either of main chain or branch linkages. Neither was it required for sucrose hydrolysis, acceptor reactions, or enzyme renaturation after SDS-polyacrylamide gel electrophoresis. A model for dextran synthesis is proposed in which dextransucrase has two Ca2+ sites, one activating and one inhibitory. Ca2+ at the inhibitory site prevents the binding of sucrose.  相似文献   

15.
16.
J P Richardson  M R Macy 《Biochemistry》1981,20(5):1133-1139
The dependence fo rate of adenosine 5'-triphosphate (ATP) hydrolysis catalyzed by ribonucleic acid (RNA) synthesis termination protein rho from Escherichia coli with T7 RNA as cofactor is used to probe the nature of the interaction between rho and RNA. In general, reaction conditions that destabilize the secondary structure of the RNA enhance its cofactor activity. This is indicated by the effects of MgCl2 concentration, spermidine, temperature, dimethyl sulfoxide, and pretreatment of the RNA with formaldehyde. These results suggest that a functional interaction between rho and RNA depends either on the presence of a sufficiently large single-stranded region in the RNA or on the ability of rho to unwind double helices in the RNA. It is also shown that changes in reaction conditions that increase RNA secondary structure and decrease the rho protein adenosine triphosphate phosphohydrolase (rhoATPase) activity with isolated T7 RNA also decrease the stringency of rho action in RNA synthesis termination. On the other hand, monovalent salts decrease rhoATPase activity with isolated T7 RNA and binding of rho to T7 RNA independently of the MgCl2 concentration and thus the relative stability of the RNA secondary structure.  相似文献   

17.
Characterization of the ascorbic acid transport by 3T6 fibroblasts   总被引:2,自引:0,他引:2  
Ascorbic acid transport by 3T6 mouse skin fibroblasts has been characterized using radiometric technique with L-[1-14C]ascorbic acid under the conditions in which oxidation of ascorbic acid was prevented by addition of 1 mM thiourea. The ascorbate transport is temperature-dependent with the energy of activation E and Q10 of 13.3 kcal/mol and 2.0, respectively. The transport requires energy and exhibits Michaelis-Menten kinetics with an apparent Km of 112 microM and Vmax of 158 pmol/min per mg protein, when the extracellular Na+ concentration is 150 mM. The ascorbate transport requires presence of extracellular Na+ and can be inhibited by ouabain treatment. At 40 and 200 microM ascorbate concentrations, respectively, 1.4 and 1.0 moles of Na+ bound the transporter molecule per each mole of ascorbate transported. Increased Na+ binding to the transporter at lower ascorbate concentration may signify multiple Na+-binding sites or ascorbate concentration dependent conformational changes in the transporter molecule. Increasing Na+ concentration decreases Km without affecting Vmax, suggesting that Na+ increases affinity of ascorbate for the transporter molecule without affecting translocation process. An increase in ascorbate concentration reduces the number of Na+ bound to the transporter from 1.4 to 1.0. The ascorbate transport is stimulated by Ca2+ and other divalent cations. The mechanism of stimulation by Ca2+ is not clear. Calcium increases both the Km and Vmax. The data presented support the hypothesis that the ascorbate transport by 3T6 fibroblasts is an energy and temperature-dependent active process driven by the Na+ electrochemical gradient. A potent inhibitor of ascorbate transport is also demonstrated in human serum.  相似文献   

18.
DNA polymerase alpha cofactors C1C2 function as primer recognition proteins   总被引:10,自引:0,他引:10  
Most, if not all, of the DNA polymerase alpha activity in monkey and human cells was complexed with at least two proteins, C1 and C2, that together stimulated the activity of this enzyme from 180- to 1800-fold on low concentrations of denatured DNA, parvovirus DNA, M13, and phi X174 DNA or RNA-primed DNA templates, and poly(dT):oligo(dA) or oligo(rA). These primer-template combinations, which have from 200 to 5000 bases of template/primer, were then 7- to 50-fold more effective as substrates than DNase I-activated DNA. C1C2 specifically stimulated alpha polymerase, and only from the same cell type. Alpha X C1C2-polymerase reconstituted from purified alpha polymerase and the C1C2 cofactor complex behaved the same as native alpha X C1C2-polymerase and C1C2 had no effect on the sensitivity of alpha polymerase to aphidicolin, dideoxythymidine triphosphate, and N-ethylmaleimide. In the presence of substrates with a high ratio of single-stranded DNA template to either DNA or RNA primar, C1C2 increased the rate of DNA synthesis by decreasing the Km for the DNA substrate, decreasing the Km for the primer itself, increasing the use of shorter primers, and stimulating incorporation of the first deoxyribonucleotide. In contrast, C1C2 had no effect on the Km values for deoxyribonucleotide substrates (which were about 150-fold higher than for DNA replication in isolated nuclei), the ability of specific DNA sequences to arrest alpha polymerase, or the processivity of alpha polymerase. Accordingly, C1C2 function as primer recognition proteins. However, C1C2 did not reduce the comparatively high Km values or stimulate DNA synthesis by alpha polymerase on lambda DNA ends and DNase I-activated DNA, substrates with 12 and about 30-70 bases of template/primer, respectively. DNA restriction fragments with 1 to 4 bases of template/primer were substrates for neither alpha nor alpha X C1C2-polymerase. Therefore, we propose that C1C2 enhances the ability of alpha polymerase to initiate DNA synthesis by eliminating nonproductive binding of the enzyme to single-stranded DNA, allowing it to slide along the template until it recognizes a primer.  相似文献   

19.
Escherichia coli RNA polymerase was assayed with 4 mM Mg2+ and 1 mM Mn2+ using native DNA, heat-denatured DNA, histone-nucleate and isolated rat liver nuclei as the template source. With purified DNA and either or both divalent metal ions, 0.1--5 mM amine stimulated enzyme activity. Spermidine resulted in the greatest stimulation (1.7-fold at 5 mM); whereas, spermine or methylglyoxal bis(guanylhydrazone) first stimulated, then above 3 mM inhibited, the reaction. The addition of unfractionated histone to purified DNA inhibited the reaction by 90%. The subsequent addition of amines resulted in a slight stimulation in incorporation (1.5-fold) in the range of 1--3 mM amine. Alternatively, when enzyme was combined with DNA before histone, only a 20% inhibition was observed and this could be completely prevented by 3 mM spermidine. The addition of amines to isolated nuclei resulted in marked alterations in ultrastructure and Mg2+ content; however, relatively small effects on RNA polymerase activity were observed. With the E. coli enzyme, 0.1--1.0 mM amine stimulated RNA synthesis (1.5-fold) whereas, none of the amines stimulated endogeneous activity in the absence or presence of 300 mM (NH4)2SO4.  相似文献   

20.
Tyrosine hydroxylase in bovine adrenal medulla was activated up to fourfold by incubation with low concentrations (15 micrograms/ml) of ribonucleic acids. At higher RNA concentrations, enzyme activity was inhibited. This interaction with RNA was exploited with the use of poly(A)-Sepharose and DNA-cellulose to effect a rapid purification of stable tyrosine hydroxylase from rat brain and bovine adrenal medulla in high yield (up to 58%). With the purified rat brain enzyme, RNA acted as an uncompetitive inhibitor, a concentration of 15 micrograms/ml lowering the Vmax of tyrosine hydroxylase from 1050 to 569 nmol min-1 mg-1 and lowering the Km for tyrosine from 6.1 to 3.6 microM. With the natural cofactor, tetrahydrobiopterin (BH4), two Km values were obtained, indicating the presence of two forms of the enzyme. Both Km values were decreased only slightly by RNA. The purified brain and adrenal enzymes both contained about 0.07 mol of phosphate/63,000-Da subunit; in both cases, cyclic AMP-dependent protein kinase catalyzed the incorporation of an additional 0.8 mol of phosphate/subunit. The purified enzyme also contains ribonucleic acid, which comprises about 10% of the total mass and appears to be important for full activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号