首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Pancreatic duct epithelial cells (PDEC) mediate the exocrine secretion of fluid and electrolytes. We previously reported that ATP and UTP interact with P2Y(2) receptors on nontransformed canine PDEC to increase intracellular free Ca2+ concentration ([Ca2+](i)) and stimulate Ca2+-activated Cl- and K+ channels. We now report that ATP interacts with additional purinergic receptors to increase cAMP and activate Cl- channels. ATP, 2-methylthio-ATP, and ATP-gamma-S stimulated a 4- to 10-fold cAMP increase with EC(50) of 10-100 microM. Neither UTP nor adenosine stimulated a cAMP increase, excluding a role for P2Y(2) or P1 receptors. Although UTP stimulated an (125)I(-) efflux that was fully inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester (BAPTA-AM), ATP stimulated a partially resistant efflux, suggesting activation of additional Cl- conductances through P2Y(2)-independent and Ca2+-independent pathways. In Ussing chambers, increased cAMP stimulated a much larger short-circuit current (I(sc)) increase from basolaterally permeabilized PDEC monolayers than increased [Ca2+](i). Luminal ATP and UTP and serosal UTP stimulated a small Ca2+-type I(sc) increase, whereas serosal ATP stimulated a large cAMP-type I(sc) response. Serosal ATP effect was inhibited by P2 receptor blockers and unaffected by BAPTA-AM, supporting ATP activation of Cl- conductances through P2 receptors and a Ca2+-independent pathway. RT-PCR confirmed the presence of P2Y(11) receptor mRNA, the only P2Y receptor acting via cAMP.  相似文献   

2.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca(2+) mobilization. Based on a mathematical model of purinergic Ca(2+) signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y(2) and P2Y(4) receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca(2+). Cellular responses versus concentration of BzATP, a P2Y(2) agonist and a P2Y(4) antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y(2) and P2Y(11) are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y(2)/P2Y(4) homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y(2) and P2Y(4) receptors operative mostly in the dimeric form.  相似文献   

3.
ATP is an important extracellular signaling molecule and can activate both ionotropic (P2X) and metabotropic purinergic (P2Y) receptors to influence cellular function in many aspects. Gap junction is an intercellular channel and plays a critical role in hearing. Here, we report that stimulation of ATP reduced gap junctional coupling between cochlear supporting cells. This uncoupling effect could be evoked by nanomolar physiological levels of ATP. A P2X receptor agonist benzoylbenzoyl-ATP (BzATP) but not a P2Y receptor agonist UTP stimulated this uncoupling effect. Application of P2X receptor antagonists pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS, 50 μM) or oxidized ATP (oATP, 0.1 mM) eliminated this uncoupling effect. We further found that ATP activated P2X receptors in the cochlear supporting cells allowing Ca2+ influxing, thereby increasing intracellular Ca2+ concentration to mediate gap junctions. These data suggest that ATP can mediate cochlear gap junctions at the physiological level by the activation of P2X receptors rather than P2Y receptors. This P2X receptor-mediated purinergic control on the cochlear gap junctions may play an important role in the regulation of K+-recycling for ionic homeostasis in the cochlea and the reduction of hearing sensitivity under noise stress for protection.  相似文献   

4.
5.
P2Y receptor regulation of anion secretion was investigated in porcine endometrial gland (PEG) epithelial cells. P2Y2, P2Y4, and P2Y6 receptors were detected in monolayers of PEG cells and immunocytochemistry indicated that P2Y4 receptors were located in the apical membrane. Apical membrane current measurements showed that Ca2+-dependent and PKC-dependent Cl- channels were activated following treatment with uridine triphosphate (UTP) (5 microM). Current-voltage relationships comparing calcium-dependent and PKC-dependent UTP responses under biionic conditions showed significant differences in selectivity between Cl-)and I- for the PKC-dependent conductance (P(I)/P(Cl) = 0.76), but not for Ca2+-dependent conductance (PI/P(Cl) = 1.02). The I-/Cl- permeability ratio for the PKC-dependent conductance was identical to that measured for 8-cpt cAMP. Furthermore, PKC stimulation using phorbol 12-myristate 13-acetate (PMA) activated an apical membrane Cl- conductance that was blocked by the CFTR selective inhibitor, CFTRinh-172. CFTR silencing, accomplished by stable expression of small hairpin RNAs (shRNA), blocked the PKC-activated conductance associated with UTP stimulation and provided definitive evidence of a role for CFTR in anion secretion. CFTR activation increased the initial magnitude of Cl- secretion, and provided a more sustained secretory response compared to conditions where only Ca2+-activated Cl- channels were activated by UTP. Measurements of [cAMP]i following UTP and PMA stimulation were not significantly different than untreated controls. Thus, these results demonstrate that UTP and PMA activation of CFTR occurs independently of increases in intracellular cAMP and extend the findings of earlier studies of CFTR regulation by PKC in Xenopus oocytes to a mammalian anion secreting epithelium.  相似文献   

6.
Extracellular ATP and ADP have been shown to exhibit potent angiogenic effects on pulmonary artery adventitial vasa vasorum endothelial cells (VVEC). However, the molecular signaling mechanisms of extracellular nucleotide-mediated angiogenesis remain not fully elucidated. Since elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is required for cell proliferation and occurs in response to extracellular nucleotides, this study was undertaken to delineate the purinergic receptor subtypes involved in Ca(2+) signaling and extracellular nucleotide-mediated mitogenic responses in VVEC. Our data indicate that stimulation of VVEC with extracellular ATP resulted in the elevation of [Ca(2+)](i) via Ca(2+) influx through plasma membrane channels as well as Ca(2+) mobilization from intracellular stores. Moreover, extracellular ATP induced simultaneous Ca(2+) responses in both cytosolic and nuclear compartments. An increase in [Ca(2+)](i) was observed in response to a wide range of purinergic receptor agonists, including ATP, ADP, ATPγS, ADPβS, UTP, UDP, 2-methylthio-ATP (MeSATP), 2-methylthio-ADP (MeSADP), and BzATP, but not adenosine, AMP, diadenosine tetraphosphate, αβMeATP, and βγMeATP. Using RT-PCR, we identified mRNA for the P2Y1, P2Y2, P2Y4, P2Y13, P2Y14, P2X2, P2X5, P2X7, A1, A2b, and A3 purinergic receptors in VVEC. Preincubation of VVEC with the P2Y1 selective antagonist MRS2179 and the P2Y13 selective antagonist MRS2211, as well as with pertussis toxin, attenuated at varying degrees agonist-induced intracellular Ca(2+) responses and activation of ERK1/2, Akt, and S6 ribosomal protein, indicating that P2Y1 and P2Y13 receptors play a major role in VVEC growth responses. Considering the broad physiological implications of purinergic signaling in the regulation of angiogenesis and vascular homeostasis, our findings suggest that P2Y1 and P2Y13 receptors may represent novel and specific targets for treatment of pathological vascular remodeling involving vasa vasorum expansion.  相似文献   

7.
8.
Macrophages express two distinct types of nucleotide (P2 purinergic) receptors for extracellular ATP: one type induces a Ca(2+)-mobilizing response via the activation of phosphatidylinositol-phospholipase C (PI-PLC) while the second type induces the rapid formation of nonselective pores which are permeated by ions and small (< 1 kDa) organic molecules. We have confirmed the presence of these two ATP receptor types in the BAC1.2F5 murine macrophage cell line and have identified 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) as a selective and potent agonist for the so-called P2z or pore-forming ATP receptor type. Several lines of evidence indicated that occupation of these P2z receptors is also accompanied by a rapid and large increase in the activity of a phosphatidylcholine-selective phospholipase D (PLD) effector enzyme. In cells metabolically labeled with [3H]oleic acid or [3H]glycerol and stimulated in the presence of ethanol, ATP and BzATP induced a severalfold increase in the rate and extent of [3H]phosphatidylethanol (PEt) accumulation. These responses were stimulated only by ATP, BzATP, and ATP gamma S (adenosine 5'-O-(3-thiotriphosphate) with the rank order of potency: BzATP > ATP > ATP gamma A; there was no response to other adenine nucleotides or to non-adenine nucleotides. Significantly, the ability of P2z receptor agonists to stimulate this PLD activity was not dependent on the presence of extracellular [Ca2+] or elevation of cytosolic [Ca2+]. The inability of ionomycin, gramicidin, digitonin, UTP, platelet-activating factor, or phorbol ester to quantitatively mimic these nucleotide effects suggested that activation of this PLD by P2z receptor agonists was not a secondary response due to: 1) enhanced Ca2+ influx; 2) membrane depolarization; 3) nonselective permeabilization of the plasma membrane; 4) stimulation of Ca(2+)-mobilizing ATP receptors; 5) stimulation of a primary PI-PLC pathway; or 6) activation of protein kinase C. These findings suggest that activation of a novel PLD-based signaling pathway may play an important role in the modulation of macrophage function by pore-forming P2z receptors for extracellular ATP.  相似文献   

9.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca2+ mobilization. Based on a mathematical model of purinergic Ca2+ signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y2 and P2Y4 receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca2+. Cellular responses versus concentration of BzATP, a P2Y2 agonist and a P2Y4 antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y2 and P2Y11 are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y2/P2Y4 homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y2 and P2Y4 receptors operative mostly in the dimeric form.  相似文献   

10.
We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (K(i) = 64 microM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P(2)) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-gamma-S, whereas alpha, beta-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P(2)Y(2) purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (N(G)-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P(2)Y(2) receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.  相似文献   

11.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   

12.
13.
14.
ATP has been reported to inhibit or stimulate lymphoid cell proliferation, depending on the origin of the cells. Agents that increase cAMP, such as PGE(2), inhibit human CD4(+) T cell activation. We demonstrate that several ATP derivatives increase cAMP in both freshly purified and activated human peripheral blood CD4(+) T cells. The rank order of potency of the various nucleotides was: adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) approximately 2'- and 3'-O-(4-benzoylbenzoyl) ATP (BzATP) > ATP > 2-methylthio-ATP > dATP, 2-propylthio-beta,gamma-dichloromethylene-D-ATP, UDP, UTP. This effect did not involve the activation of A(2)Rs by adenosine or the synthesis of prostaglandins. ATPgammaS had no effect on cytosolic calcium, whereas BzATP induced an influx of extracellular calcium. ATPgammaS and BzATP inhibited secretion of IL-2, IL-5, IL-10, and IFN-gamma; expression of CD25; and proliferation after activation of CD4(+) T cells by immobilized anti-CD3 and soluble anti-CD28 Abs, without increasing cell death. Taken together, our results suggest that extracellular adenine nucleotides inhibit CD4(+) T cell activation via an increase in cAMP mediated by an unidentified P2YR, which might thus constitute a new therapeutic target in immunosuppressive treatments.  相似文献   

15.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

16.
Neuroinflammation is associated with a variety of CNS pathologies. Levels of tumor necrosis factor-alpha (TNF-alpha), a major proinflammatory cytokine, as well as extracellular ATP, are increased following various CNS insults. Here we report on the relationship between ATP/P2 purinergic receptor activation and lipopolysaccharide (LPS)-induced TNF-alpha release from primary cultures of rat cortical astrocytes. Using ELISA, we confirmed that treatment with LPS stimulated the release of TNF-alpha in a concentration and time dependent manner. ATP treatment alone had no effect on TNF-alpha release. LPS-induced TNF-alpha release was attenuated by 1 mm ATP, a concentration known to activate P2X7 receptors. Consistent with this, 3'-O-(4-Benzoyl)benzoyl-ATP (BzATP), a P2X7 receptor agonist, also attenuated LPS-induced TNF-alpha release. This reduction in TNF-alpha release was not due to loss of cell viability. Adenosine and 2-chloroadenosine were ineffective, suggesting that attenuation of LPS-induced TNF-alpha release by ATP was not due to ATP breakdown and subsequent activation of adenosine/P1 receptors. Interestingly, treatment of astrocyte cultures with 10 microm or 100 microm ATP potentiated TNF-alpha release induced by a submaximal concentration of LPS. UTP and 2methylthioADP (2-MeSADP), P2Y receptor agonists, also enhanced this LPS-induced TNF-alpha release. Our observations demonstrate opposing effects of ATP/P2 receptor activation on TNF-alpha release, i.e. P2X receptor activation attenuates, whereas P2Y receptor activation potentiates TNF-alpha release in LPS-stimulated astrocytes. These observations suggest a mechanism whereby astrocytes can sense the severity of damage in the CNS via ATP release from damaged cells and can modulate the TNF-alpha mediated inflammatory response depending on the extracellular ATP concentration and corresponding type of astrocyte ATP/P2 receptor activated.  相似文献   

17.
Fura-2 imaging of purinergic stimulation of non-differentiated neuronal human SH-SY5Y cells resulted in a rapid elevation in intracellular Ca2+ ([Ca2+]i) that was dependent on extracellular Ca2+. The rank order of agonists (200 micro m) was as follows: 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) > ATP4- > ATP; whereas 2-(methylthio)-ATP, ADP, UTP and alpha,beta-methylene-ATP and beta,gamma-methylene-ATP were ineffective. The response to BzATP was inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic-acid (PPADS, 1 micro m), 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl)-4-phenylpiperazine (KN-62, 100 nm) and 8-(3-benzamido-4-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic-acid (suramin, 200 micro m). The presence of a P2X7 receptor was confirmed by western blot studies using anti-P2X7. EC50 for BzATP was 212 +/- 6 micro m. BzATP > 30 micro m induced an initial, transient increase in [Ca2+]i before a plateau level was reached. BzATP < 30 micro m only produced a monophasic increase to the plateau level. The transient phase was reduced by the introduction of nimodipine (3 micro m) and to a smaller degree by omega-conotoxin GVIA (1 micro m) despite an almost equal presence of L and N-type Ca2+-channels. In whole-cell voltage-clamp studies at - 90 mV, BzATP (300 micro m) produced a fast activating inward current with a similar pharmacology as observed with Fura-2 imaging. Current clamp studies showed a dose-dependent depolarization to BzATP and ATP4-. BzATP also triggered transmitter release. Thus, the human neuronal SH-SY5Y cell line expresses a functional P2X7 receptor coupled to activation of Ca2+-channels.  相似文献   

18.
19.
The Xenopus follicular cell membrane is endowed with ATP-sensitive K+ channels, which are operated by various transmitters. These generate the ionic response named IK,cAMP via a mechanism that involves intracellular cAMP synthesis. It is known that opening these K+ channels favors oocyte maturation. Follicle stimulation by adenosine (Ado) or ATP consistently generates a strong IK,cAMP via activation of P1 and P3 purinergic receptors; however, ATP can also inhibit IK,cAMP, apparently acting on a third receptor type. Here, we show that IK,cAMP might be elicited by ATP released within the follicle, and that current activation by ATP was entirely dependent on the presence of epithelial and/or theca layers. Morphological studies confirmed that removal of epithelium/theca in these follicles (e.t.r.) was complete, and activation of fast Cl- (Fin) currents by ATP in e.t.r. follicles confirmed that communication between oocyte and follicular cells remained unchanged. Thus, dependence on epithelium/theca was specific for ATP-elicited K+ current. Using UTP and betagamma-MeATP as specific purinergic agents for IK,cAMP inhibition and activation, respectively, it was found that inhibition of IK,cAMP elicited by ATP or UTP was robustly present in e.t.r. follicles but was absent or strongly decreased in whole follicles (w.f.). Accordingly, this indicated that in w.f., epithelium and/or theca downregulated the IK,cAMP inhibition evoked by ATP, and that this control mechanism was absent in e.t.r. follicles. We suggest that this notable action on follicular cells involves one or both of two mechanisms, a paracrine transmitter released from epithelial and/or theca layers and action of ecto-ATPases.  相似文献   

20.
Extracellular nucleotides activate P2Y receptors, thereby increasing cAMP formation in Madin-Darby canine kidney (MDCK-D(1)) cells, which express P2Y(1), P2Y(2), and P2Y(11) receptors (Post, S. R., Rump, L. C., Zambon, A., Hughes, R. J., Buda, M. D., Jacobson, J. P., Kao, C. C., and Insel, P. A. (1998) J. Biol. Chem. 273, 23093-23097). The cyclooxygenase inhibitor indomethacin (indo) eliminates UTP-promoted cAMP formation (i.e. via P2Y(2) receptors) but only partially blocks ATP-promoted cAMP formation. The latter response is completely blocked by the nonselective P2Y receptor antagonist suramin. We have sought to identify the mechanism for this P2Y receptor-mediated, indo-resistant cAMP formation. The agonist rank order potencies for cAMP formation were: ADP beta S > or = MT-ADP > 2-MT-ATP > ADP, ATP, ATP gamma S > UTP, AMP, adenosine. We found a similar rank order in MDCK-D(1) cells overexpressing cloned green fluorescent protein-tagged P2Y(11) receptors, but the potency of the agonists was enhanced, consistent with a P2Y(11) receptor-mediated effect. cAMP generation by the P2Y(1) and P2Y(11) receptor agonist ADP beta S was not inhibited by several P2Y(1)-selective antagonists (PPADS, A2P5P, and MRS 2179). Forskolin synergistically enhanced cAMP generation in response to ADP beta S or PGE(2), implying that, like PGE(2), ADP beta S activates adenylyl cyclase via G(s), a conclusion supported by results showing ADP beta S and MT-ADP promoted activation of adenylyl cyclase activity in MDCK-D(1) membranes. We conclude that nucleotide-promoted, indo-resistant cAMP formation in MDCK-D(1) cells occurs via G(s)-linked P2Y(11) receptors. These data describing adenylyl cyclase activity via endogenous P2Y(11) receptors define a mechanism by which released nucleotides can increase cAMP in MDCK-D(1) and other P2Y(11)-containing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号