首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The N-terminal domain of mouse Sonic hedgehog (Shh-N) expressed in mammalian cells showed four-fold bands on non-reduced SDS-PAGE, though it was homogeneous under reduced conditions. It contains three cysteine residues, Cys-25, Cys-103, and Cys-184, which may be concerned with this heterogeneity. Therefore, we examined the formation of a disulfide bond in the recombinant Shh-N and identified three kinds of disulfides with a combination of peptide mapping and NH(2)-terminal amino acid sequencing analysis. Among them, one type of the Shh-N containing a disulfide bond of Cys-103/Cys-184 could be separated from the other Shh-Ns using reverse phase HPLC and had no activity of alkaline phosphatase induction in C3H10T1/2 cells. This molecule could also be made by denaturation of the purified Shh-N with guanidine-HCl under non-reduced conditions. On the other hand, the reduced Shh-N and the reduced S-methylated Shh-N at cysteine residues showed approximately 10-fold higher activity compared to the originally purified Shh-N. These results suggested that Shh-N was synthesized as an active form whose three cysteine residues did not form disulfide and inactivated finally by forming a disulfide bond between Cys-103 and Cys-184.  相似文献   

2.
An alpha-amylase inhibitor (0.53-inhibitor) was digested with pepsin and the cystine-containing peptides were isolated by SP-Sephadex C-25 column chromatography and high voltage paper electrophoresis. Amino acid compositions and partial sequences of these peptides and amino acid compositions of the peptides separated after performic acid oxidation revealed the presence of 4 disulfide bonds in the inhibitor. They were formed between residues 6 and 115, 20 and either 41 or 42, 99 and either 41 or 42, and 28 and 83. The disulfide bond partners of residues 20 and 99 were not conclusively determined because of the difficulty of cleavage of the Cys-Cys bond at residues 41 and 42. Among 9 cysteines in this inhibitor Cys-54 must be in a free form, since no evidence was obtained for its contribution to disulfide bond formation.  相似文献   

3.
Heat-stable enterotoxin II of Escherichia coli (STII) is synthesized as a precursor form consisting of pre- and mature regions. The pre-region is cleaved off from the mature region during translocation across the inner membrane, and the mature region emerges in the periplasm. The mature region, composed of 48 amino acid residues, is processed in the periplasm by DsbA to form an intramolecular disulfide bond between Cys-10 and Cys-48 and between Cys-21 and Cys-36. STII formed with these disulfide bonds is efficiently secreted out of the cell through the secretory system, including TolC. However, it remains unknown which regions of STII are involved in interaction with TolC. In this study, we mutated the STII gene and examined the secretion of these STIIs into the culture supernatant. A deletion of the part covering from amino acid residue 37 to the carboxy terminal end did not markedly reduce the efficiency of secretion of STII into the culture supernatant. On the other hand, the efficiency of secretion of the peptide covering from the amino terminal end to position 18 to the culture supernatant was significantly low. These observations indicated that the central region of STII from amino acid residue 19 to that at position 36 is involved in the secretion of STII into the milieu. The experiment using a dsbA-deficient strain of E. coli showed that the disulfide bond between Cys-21 and Cys-36 by DsbA is necessary for STII to adapt to the structure that can cross the outer membrane.  相似文献   

4.
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.  相似文献   

5.
The catalytic (C) subunit and the type II regulatory (RII) subunit of cAMP-dependent protein kinase can be cross-linked by interchain disulfide bonding. This disulfide bond can be catalyzed by cupric phenanthroline and also can be generated by a disulfide interchange using either RII-subunit or C-subunit that has been modified with either 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or N-4(azidophenylthio)phthalimide (APTP). When the 2 cysteine residues of the C-subunit are reacted with DTNB prior to incubation with the RII-subunit, interchain disulfide bonding occurs. Similar observations are seen with C-subunit that had been modified with APTP. Interchain disulfide bonds also form when the RII-subunit is modified with DTNB prior to incubation with the C-subunit. The presence of cAMP facilitates this cross-linking while autophosphorylation of the RII-subunit retards the rate at which the interchain disulfide bond forms. Interchain disulfide bonds also form spontaneously when the RII-subunit and the C-subunit are dialyzed at pH 8.0 in the absence of reducing agents. The specific amino acid residues that participate in intersubunit disulfide bonding have been identified as Cys-97 in the RII-subunit and Cys-199 in the C-subunit. Based on the sequence homologies of the RII-subunit with other kinase substrates and on the proximity of Cys-97 to the catalytic site, a model is proposed in which the autophosphorylation site of the RII-subunit occupies the substrate-binding site in the holoenzyme. The model also proposes that this same site may be occupied by the region flanking Cys-199 in the C-subunit when the C-subunit is dissociated.  相似文献   

6.
Methionine oxidation into methionine sulfoxide is known to be involved in many pathologies and to exert regulatory effects on proteins. This oxidation can be reversed by a ubiquitous monomeric enzyme, the peptide methionine sulfoxide reductase (MsrA), whose activity in vivo requires the thioredoxin-regenerating system. The proposed chemical mechanism of Escherichia coli MsrA involves three Cys residues (positions 51, 198, and 206). A fourth Cys (position 86) is not important for catalysis. In the absence of a reducing system, 2 mol of methionine are formed per mole of enzyme for wild type and Cys-86 --> Ser mutant MsrA, whereas only 1 mol is formed for mutants in which either Cys-198 or Cys-206 is mutated. Reduction of methionine sulfoxide is shown to proceed through the formation of a sulfenic acid intermediate. This intermediate has been characterized by chemical probes and mass spectrometry analyses. Together, the results support a three-step chemical mechanism in vivo: 1) Cys-51 attacks the sulfur atom of the sulfoxide substrate leading, via a rearrangement, to the formation of a sulfenic acid intermediate on Cys-51 and release of 1 mol of methionine/mol of enzyme; 2) the sulfenic acid is then reduced via a double displacement mechanism involving formation of a disulfide bond between Cys-51 and Cys-198, followed by formation of a disulfide bond between Cys-198 and Cys-206, which liberates Cys-51, and 3) the disulfide bond between Cys-198 and Cys-206 is reduced by thioredoxin-dependent recycling system process.  相似文献   

7.
The Escherichia coli heat-stable enterotoxin II (STII) is a typical extracellular toxin consisting of 48 amino acid residues, of which 4 are cysteine. There are two disulfide bonds, one between Cys-10 and Cys-48 and one between Cys-21 and Cys-36. We examined the involvement of DsbA in the formation of the disulfide bonds of STII and the role of each in the secretion of STII. A dsbA mutant was transformed with a plasmid harboring the STII gene, and STII was not detected either in the cells or in the culture supernatant. Reducing the level of STII brought about the dsbA mutation restored by introducing the wild-type dsbA gene into the mutant strain. These results showed that DsbA is involved in forming the disulfide bonds of STII and that STII without these disulfide bonds is degraded during secretion. We substituted these four cysteine residues in vivo by oligonucleotide-directed site-specific mutagenesis. The amino acid sequence of the purified STII (C48S) and pulse-chase studies revealed that two intermolecular disulfide bonds must be formed to be efficiently secreted and that cleavage between amino acid residues 14 and 15 is probably the first step in the proteolytic degradation of STII.  相似文献   

8.
Cloned cDNA of human interleukin 2 (IL-2) was expressed in Escherichia coli cells in which IL-2 formed insoluble inclusion bodies. Human IL-2 has three Cys residues, namely, Cys-58, Cys-105, and Cys-125, and native IL-2 has an intramolecular disulfide bond between Cys-58 and Cys-105. Since the formation of inclusion bodies was thought to be due to disorder in the oxidation state of these Cys residues, all intramolecular disulfide bond isomers of IL-2 were prepared by denaturation of native IL-2 to characterize the state of a disulfide bond in IL-2 in the inclusion bodies. These isomers can be separated from native IL-2, reduced IL-2, and IL-2's with intermolecular disulfide bonds by means of reversed-phase high-performance liquid chromatography. Human IL-2 produced in inclusion bodies in E. coli carrying a recombinant DNA was analyzed by HPLC and was proved to be a fully reduced form with no intra- and intermolecular disulfide bonds. Refolding of reduced IL-2 in the presence of reduced and oxidized glutathione and a low concentration of guanidine hydrochloride resulted in the formation of the biologically active IL-2 quantitatively. Further purification provided a practically pure IL-2 preparation without contamination of any disulfide bond isomers.  相似文献   

9.
The retinoid affinity label 11[3H]--ionylidene ethylbromoacetate (IEBA) was covalently bound to plasma retinol-binding protein (RBP) and studies were conducted to identify the region of the protein molecule that contained the linkage between the IEBA ligand and RBP. Cleavage by trypsin and cyanogen bromide of the labeled protein followed by high-performance liquid chromatography (HPLC) separation of peptides and identification of radioactive peaks by amino acid analysis points to attachment of the ligand on tryptic peptides T(1+2) (containing residues 1–5) and T(21) (residues 156–163). These two peptides in the native protein molecule are connected by a disulfide bond between Cys-4 and Cys-160. To confirm the site of attachment of the radioactive ligand, unreduced IEBA-RBP with the disulfide bonds intact was treated first with cyanogen bromide and then with trypsin. Separation of the tryptic peptides by HPLC yielded one main peak of radioactivity containing both peptides T(1+2) and T(21), presumably connected by a disulfide bond. Taken together, these results indicated that the sites of attachment of IEBA to RBP are located within the region of the RBP molecule close to the Cys-4–Cys-160 bond, and specifically within the region comprised of amino acid residues 1–5 and 156–163.  相似文献   

10.
Han MK  Lin P  Paek D  Harvey JJ  Fuior E  Knutson JR 《Biochemistry》2002,41(10):3468-3476
Translin is an octameric single-stranded DNA binding protein consisting of 228 amino acid residues per monomer. This protein contains two cysteine residues per monomer. Studies of reactions with DTNB show that both cysteines are reactive and exhibit biphasic reaction kinetics. Further studies with two site-directed mutants, C58S and C225S, confirm that Cys-58 reacts slowly while Cys-225 reacts quickly. Pyrene excimer emission was observed for pyrene maleimide-labeled C58S mutant. This was not observed, however, with the pyrene maleimide-labeled C225S mutant. DAS (decay associated spectra) revealed that all excited pyrene labels on C225 residues can form excimers with pyrenes of adjacent subunits within a few nanoseconds. Time-resolved emission anisotropy detects a rotational correlation time appropriate for octameric but not dimeric species. These results indicate proximity for the Cys-225 residues on adjacent monomers and that the subunits must interact in a tail-to-tail orientation. Moreover, disulfide bonds are not required for the formation of an octamer.  相似文献   

11.
Unlike other fatty acid-binding proteins, cutaneous (epidermal) fatty acid-binding proteins contain a large number of cysteine residues. The status of the five cysteine residues in rat cutaneous fatty acid-binding protein was examined by chemical and mass-spectrometric analyses. Two disulfide bonds were identified, between Cys-67 and Cys-87, and between Cys-120 and Cys-127, though extent of formation of the first disulfide bond was rather low in another preparation. Cys-43 was free cysteine. Homology modeling study of the protein indicated the close proximity of the sulfur atoms of these cysteine pairs, supporting the presence of the disulfide bonds. These disulfide bonds appear not to be directly involved in fatty acid-binding activity, because a recombinant rat protein expressed in Escherichia coli in which all five cysteines are fully reduced showed fatty acid-binding activity as examined by displacement of a fluorescent fatty acid analog by long-chain fatty acids. However, the fact that the evolutionarily distant shark liver fatty acid-binding protein also has a disulfide bond corresponding to the one between Cys-120 and Cys-127, and that fatty acid-binding proteins play multiple roles suggests that some functions of cutaneous fatty acid-binding protein might be regulated by the cellular redox state through formation and reduction of disulfide bonds. Although we cannot completely exclude the possibility of oxidation during preparation and analysis, it is remarkable that a protein in cytosol under normally reducing conditions appears to contain disulfide bonds.  相似文献   

12.
Purified bovine heart two-band cytochrome c1 subcomplex was dissociated by treatment with p-chloromercuribenzoic acid (pCMB) into its heme subunit and a colorless subunit called hinge protein, which is essential for the formation of cytochrome c1-c complex. The subcomplex was found by titration to react with 4 mol of pCMB per mol of cytochrome c1. The contents of mercury of the dissociated heme subunit and the hinge protein were 3 and 1 mol per mol of polypeptide, respectively. These results, together with the sequence analysis, indicated that the three cysteine residues in cytochrome c1 heme subunit not involved in heme-binding existed in free thiol form. One of the five cysteine residues in the hinge protein was in free form and four in two disulfide bonds. The dissociated hinge protein was digested with staphylococcal protease and the cysteine-containing peptides were separated by reversed-phase high-performance liquid chromatography (HPLC). The content of mercury and the result of performic acid oxidation of cystine peptides revealed that Cys-30 existed in free thiol form and two disulfide bridges were formed between Cys-24 and Cys-68 and between Cys-40 and Cys-54. The conformation of the hinge protein was predicted to be composed largely of either two-alpha-helical or four-alpha-helical conformation with the amino (N)-terminal 20 residues being in a random structure.  相似文献   

13.
The mature fusion (F) glycoprotein of the paramyxovirus family consists of two disulfide-linked subunits, the N-terminal F2 and the C-terminal F1 subunits, and contains 10 cysteine residues which are highly conserved at specific positions. The high level of conservation strongly suggests that they are indeed disulfide linked and play important roles in the folding and functioning of the molecule. However, it has not even been clarified which cysteine residues link the F2 and F1 subunits. This report describes our assignment of the disulfide bridges in purified Sendai virus F glycoprotein by fragmentation of the polypeptide and isolation of cystine-containing peptides and determination of their N-terminal sequences. The data demonstrate that all of the 10 cysteine residues participate in disulfide bridges and that Cys-70, the only cysteine in F2, and Cys-199, the most upstream cysteine in F1, form the interchain bond. Of the remaining eight cysteine residues clustered near the transmembrane domain of F1, the specific bridges identified are Cys-338 to Cys-347 and Cys-362 to Cys-370. Although no exact pairings between the subsequent four residues were defined, it seems likely that the most downstream, Cys-424, is linked to Cys-394, Cys-399, or Cys-401. Thus, we conclude that the cysteine-rich domain indeed contributes to the formation of a bunched structure containing at least two tandem cystine loops.  相似文献   

14.
The taste-modifying protein, miraculin (Theerasilp, S. et al. (1989) J. Biol. Chem. 264, 6655-6659) has seven cysteine residues in a molecule composed of 191 amino acid residues. The formation of three intrachain disulfide bridges at Cys-47-Cys-92, Cys-148-Cys-159 and Cys-152-Cys-155 and one interchain disulfide bridge at Cys-138 was determined by amino acid sequencing and composition analysis of cystine-containing peptides isolated by HPLC. The presence of an interchain disulfide bridge was also supported by the fact that the cystine peptide containing Cys-138 showed a negative color test for the free sulfhydryl group and a positive test after reduction with dithiothreitol. The molecular mass of non-reduced miraculin (43 kDa) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was nearly twice the calculated molecular mass based on the amino acid sequence and the carbohydrate content of reduced miraculin (25 kDa). The molecular mass of native miraculin determined by low-angle laser light scattering was 90 kDa. Application of a crude extract of miraculin to a Sephadex G-75 column indicated that the taste-modifying activity appears at 52 kDa. It was concluded that native miraculin in pure form is a tetramer of the 25 kDa-peptide and native miraculin in crude state or denatured, non-reduced miraculin in pure form is a dimer of the peptide. Both tetramer miraculin and native dimer miraculin in crude state had the taste-modifying activity.  相似文献   

15.
A dark state tertiary structure in the cytoplasmic domain of rhodopsin is presumed to be the key to the restriction of binding of transducin and rhodopsin kinase to rhodopsin. Upon light-activation, this tertiary structure undergoes a conformational change to form a new structure, which is recognized by the above proteins and signal transduction is initiated. In this and the following paper in this issue [Cai, K., Klein-Seetharaman, J., Altenbach, C., Hubbell, W. L., and Khorana, H. G. (2001) Biochemistry 40, 12479-12485], we probe the dark state cytoplasmic domain structure in rhodopsin by investigating proximity between amino acids in different regions of the cytoplasmic face. The approach uses engineered pairs of cysteines at predetermined positions, which are tested for spontaneous formation of disulfide bonds between them, indicative of proximity between the original amino acids. Focusing here on proximity between the native cysteine at position 316 and engineered cysteines at amino acid positions 55-75 in the cytoplasmic sequence connecting helices I-II, disulfide bond formation was studied under strictly defined conditions and plotted as a function of the position of the variable cysteines. An absolute maximum was observed for position 65 with two additional relative maxima for cysteines at positions 61 and 68. The observed disulfide bond formation rates correlate well with proximity of these residues found in the crystal structure of rhodopsin in the dark. Modeling of the engineered cysteines in the crystal structure indicates that small but significant motions are required for productive disulfide bond formation. During these motions, secondary structure elements are retained as indicated by the lack of disulfide bond formation in cysteines that do not face toward Cys316 in the crystal structure model. Such motions may be important in light-induced conformational changes.  相似文献   

16.
FTIR difference spectroscopy has been used to study the role of cysteine residues in the photoactivation of rhodopsin. A positive band near 2550 cm-1 with a low frequency shoulder is detected during rhodopsin photobleaching, which is assigned on the basis of its frequency and isotope shift to the S-H stretching mode of one or more cysteine residues. Time-resolved studies at low temperature show that the intensity of this band correlates with the formation and decay kinetics of the Meta II intermediate. Modification of rhodopsin with the reagent NEM, which selectively reacts with the SH groups of Cys-140 and Cys-316 on the cytoplasmic surface of rhodopsin, has no effect on the appearance of this band. Four other cysteine residues are also unlikely to contribute to this band because they are either thio-palmitylated (Cys-322 and Cys-323) or form a disulfide bond (Cys-110 and Cys-187). On this basis, it is likely that at least one of the four remaining cysteine residues in rhodopsin is structurally active during rhodopsin photoactivation. The possibility is also considered that this band arises from a transient cleavage of the disulfide bond between cysteine residues 110 and 187.  相似文献   

17.
The positions of the inter- and intra-chain disulfide bonds of human plasma alpha 2 HS-glycoprotein were determined. alpha 2 HS-glycoprotein was digested with acid proteinase and then with thermolysin. The disulfide bonds containing peptides were separated by reversed-phase HPLC and detected by SBD-F (7-fluorobenzo-2-oxa-1,3-diasole-4-sulfonic acid ammonium salt) method. One inter-disulfide bond containing peptide and five intra-disulfide bond containing peptides (A-chain) were purified and identified as Cys-18 (B-chain)--Cys-14 (A-chain), Cys-71--Cys-82, Cys-96--Cys-114, Cys-128--Cys-131, Cys-190--Cys-201 and Cys-212--Cys-229, respectively. The location of the intra-disulfide bonds revealed that the A-chain of alpha 2 HS-glycoprotein is composed of three domains. Two domains were shown to possess intramolecular homology judging from the total chain length of the domains, size of the loops formed by the S--S bonds, the location of two disulfide loops near the C-terminal end of domains A and B, the distance between two S--S bonds of each domain, the amino acid sequence homology between these two domains (22.6%), number of amino acid residues between the second S--S loops and the end of domains A and B, and the positions of the ordered structures.  相似文献   

18.
Vitamin K-dependent gamma-glutamyl carboxylase is a 758 amino acid integral membrane glycoprotein that catalyzes the post-translational conversion of certain protein glutamate residues to gamma-carboxyglutamate. Carboxylase has ten cysteine residues, but their form (sulfhydryl or disulfide) is largely unknown. Pudota et al. in Pudota, B. N., Miyagi, M., Hallgren, K. W., West, K. A., Crabb, J. W., Misono, K. S., and Berkner, K. L. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 13033-13038 reported that Cys-99 and Cys-450 are the carboxylase active site residues. We determined the form of all cysteines in carboxylase using in-gel protease digestion and matrix-assisted laser desorption/ionization mass spectrometry. The spectrum of non-reduced, trypsin-digested carboxylase revealed a peak at m/z 1991.9. Only this peak disappeared in the spectrum of the reduced sample. This peak's m/z is consistent with the mass of peptide 92-100 (Cys-99) disulfide-linked with peptide 446-453 (Cys-450). To confirm its identity, the m/z 1991.9 peak was isolated by a timed ion selector as the precursor ion for further MS analysis. The fragmentation pattern exhibited two groups of triplet ions characteristic of the symmetric and asymmetric cleavage of disulfide-linked tryptic peptides containing Cys-99 and Cys-450. Mutation of either Cys-99 or Cys-450 caused loss of enzymatic activity. We created a carboxylase variant with both C598A and C700A, leaving Cys-450 as the only remaining cysteine residue in the 60-kDa fragment created by limited trypsin digestion. Analysis of this fully active mutant enzyme showed a 30- and the 60-kDa fragment were joined under non-reducing conditions, thus confirming Cys-450 participates in a disulfide bond. Our results indicate that Cys-99 and Cys-450 form the only disulfide bond in carboxylase.  相似文献   

19.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

20.
A 21-kD protein isolated earlier from potato tubers (Solanum tuberosum L.) has two isoforms, with pI 6.3 and 5.2, which were separated by fast protein ion-exchange chromatography on a Mono Q column. The primary structures of the two forms consisted of 187 and 186 amino acid residues. Both isoforms are composed of two polypeptide chains, designated A and B, linked by a single disulfide bond between Cys-146 of the A chain and Cys-7 of the B chain. The amino acid sequences of the A chains of the two forms, consisting of 150 residues each, differ in a single amino acid residue at position 52 (Val --> Ile), while the B chains, containing 37 and 36 residues, respectively, have substitutions at nine positions (Leu-8 --> Ser-8, Lys-25--Asp-26 --> Asn-25--Glu-26, Ile-31--Ser-32 --> Val-31--Leu-32, Lys-34--Gln-35--Val-36--Gln-37 --> Gln-34--Glu-35--Val-36). Both isoforms form stable inhibiting complexes with human leukocyte elastase and are less effective against chymotrypsin and trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号