共查询到20条相似文献,搜索用时 15 毫秒
4.
1. Changes in fluorescence yield of chlorophyll a in isolated chloroplasts have been interpreted by means of regulation of excitation transfer between two pigment systems of photosynthesis 5–7. In order to investigate the relationship between the membrane structure of chloroplasts and the regulation of excitation transfer, changes of light scattering and chlorophyll a fluorescence of isolated spinach chloroplasts were measured upon addition of cations, Mg 2+ and Na +. The cations increased the intensities of both light scattering and fluorescence yield. The changes showed similar time courses and concentration dependences. These facts suggest that modification of membrane structure produced by the cations suppresses the excitation transfer between the two pigment systems. 2. In another case of structural change which is induced by light in the presence of N-methylphenazonium methosulfate, there was little correlation between light-scattering and fluorescence changes. 3. Changes in fluorescence yield induced by the addition of Mg2+ were measured in disintegrated chloroplasts and fractionated particles. The effects of Mg2+ on fluorescence were observed only in preparations of grana stacks, but not in preparations of stroma lamellae. These findings suggest that the excitation transfer is regulated between the two pigment systems located in the grana thylacoid membranes. 相似文献
6.
Effects of dithionite on the time-course of fluorescence emitted from chlorophyll a in isolated spinach chloroplasts were studied. Addition of dithionite markedly shortened the induction period of fluorescence and increased the steady-state level of fluorescence. However, a small but distinct induction, comparable to that observed in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea, was always observed in the presence of dithionite. When the fluorescence change was determined in the presence of DCMU, preincubation of the chloroplasts with dithionite for a prolonged period further shortened, but only slowly, the induction period. However, addition of DCMU during the incubation period abolished most of the effects of dithionite in reducing the induction period. The results obtained were interpreted in terms of the reduction by dithionite of endogenous electron carriers associated with photosystem 2. 相似文献
8.
The kinetics of chlorophyll a fluorescence were measured at 685 nm in intact cells of Porphyra yezoensis during alternate illumination of the organism with two colors of light, one absorbed by phycoerythrin and the other by chlorophyll a. Two components of fluorescence change overlapping each other in time were separated; the fast component may be controlled by the rate of Photoreaction II which competes with the fluorescence emission process, and the slow component by the light-induced change in excitation transfer between two pigment systems as suggested in our previous study 6. The kinetics of the slow change in fluorescence yield were extensively investigated. Terms, “State I” and “State II” are used to describe the state of excitation transfer. In the State I a lesser amount of excitation energy is delivered in Pigment System I and greater to Pigment System II than in the State II. The conversion of the states is achieved by the selective illumination of pigment systems. The conversion from the State I toward the State II occurred under Light II (light absorbed by Pigment System II) with a half time of about 10 sec, and it saturated at a light intensity of less than 1000 ergs×cm−2×sec−1. The reverse conversion occurred under Light I (light absorbed by Pigment System I) with a half time of about 5 sec, and it saturated at about 10 000 ergs×cm−2×sec−1. Light I and Light II competed with each other in the interconversion of the states. 相似文献
10.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M 1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M 1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochrome f of NO 2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC 2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome. f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; ) 相似文献
12.
A group of 12 alkaloids were tested as inhibitors of photophosphorylation in spinach chloroplasts. Ajmaline, a dihydroindole alkaloid, was found to be the strongest inhibitor of both cyclic and non-cyclic photophosphorylation. Low concentrations of ajmaline also inhibited the dark and light ATPases, and the coupled electron flow from water to ferricyanide, measured either as ferrocyanide formed or as oxygen evolved, but not the uncoupled electron transport or the pH rise of illuminated unbuffered suspensions of chloroplasts. Higher concentrations of ajmaline stimulated, instead of inhibiting, photosynthetic electron transport or oxygen evolution and decreased the pH rise, thus behaving as an uncoupler, such as ammonia.Photophosphorylation was partially inhibited by 100 μM dihydrosanguinarine, 100 μM dihydrochelerythrine (benzophenanthridine alkaloids); 500 μM O, O'-dimethylmagnoflorine, 500 μM N-methylcorydine (aporphine alkaloids) and 1 mM julocrotine. They also inhibited coupled oxygen evolution and only partially (dihydrosanguinarine and dihydrochelerythrine) or not at all (the other alkaloids) uncoupled oxygen evolution.Spegazzinine (dihydroindole alkaloid), magnoflorine, N-methylisocorydine, coryneine (aporphine alkaloids), candicine and ribalinium chloride were without effect on photophosphorylation at 500 μM. 相似文献
14.
Recent studies on oxygen evolution of corn chloroplast fragments in flashing light [Stemler, A., Babcock, G.T. and Govindjee (1974) Proc. Natl. Acad. Sci. 71, 4679–4683] have shown that the absence of bicarbonate ions increases the turnover time of the Photosystem II reaction center. The rate limiting steps in Photosystem II turnover can be interpreted in terms of reactions either on the oxidizing (electron donor) or reducing (electron acceptor) side of the reaction center. Experiments are reported here that suggest at least one site of bicarbonate action on the reducing side. In Triswashed spinach chloroplasts (incapable of O 2 evolution), the chlorophyll a fluorescence transient in the presence of various artificial electron donors (hydroquinone, diphenylcarbazide, MnCl 2 and NH 2OH) and in the absence of bicarbonate ions shows a rapid initial rise; the addition of 10 mM NaHCO 3 restores the transient to one characteristic of normal chloroplasts. Furthermore, the transients measured as a function of decreasing bicarbonate concentrations are qualitatively similar to those observed with increasing concentrations of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea which imposes a block on the reducing side, rather than to transients observed with increasing concentrations of NH 2OH or prolonged heat treatments, which impose a block on the oxidizing side. 相似文献
16.
Photophosphorylation in isolated spinach chloroplasts was inhibitedby all 21 peptide alkaloids tested. Zizyphine A and B, adounetineZ, amphibine B, C and D and scutianine A inhibited the coupledbut not the uncoupled electron transport. The other peptidealkaloids stimulated nonphosphorylating electron flow behavinglike uncouplers. Aralionine A, lasiodine A and mucronine B werethe strongest inhibitors and uncouplers. Lasiodine A and homalinestimulated by several times the light-induced proton uptakeby chloroplasts. (Received January 20, 1977; ) 相似文献
18.
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q
N
) which are related (q
E
) and unrelated (q
I
) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q
Ito total q
N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q
Ewas severely affected by heat and osmotic stress. In low light, the response of q
Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q
Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q
Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA
9-aminoacridine
-
F
o
basic chlorophyll fluorescence
-
F
o
variable chlorophyll fluorescence
-
L
2
saturating light pulse
- PS
photosystem
-
q
E
pH-dependent, non-photochemical quenching of fluorescence
-
q
I
pH-independent, non-photochemical quenching
-
q
N
entire non-photochemical quenching
-
q
Q
photochemical quenching 相似文献
20.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg 2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes. 相似文献
|