共查询到20条相似文献,搜索用时 15 毫秒
1.
Begum L Jalil MA Kobayashi K Iijima M Li MX Yasuda T Horiuchi M del Arco A Satrústegui J Saheki T 《Biochimica et biophysica acta》2002,1574(3):283-292
The present report describes the expression profiles of different tissues and developmental changes of mouse aspartate/glutamate carrier (AGC) genes, Slc25a13 and Slc25a12, and an ornithine transporter gene, Ornt1, in relation to urea cycle enzyme genes, carbamoylphosphate synthetase I (CPS) and argininosuccinate synthetase (ASS). Slc25a13 encodes citrin, recently found to be deficient in adult-onset type II citrullinemia and to function as AGC together with its isoform and product of Slc25a12, aralar1. Citrin was broadly distributed, but mainly in the liver, kidney and heart. Aralar1 was expressed in diaphragm, skeletal muscle, heart, brain and kidney, but not in the liver. These distribution profiles are different from the restricted of Ornt1, ASS and CPS. Citrin, ASS, CPS and Ornt1 showed similar patterns of developmental changes in the liver and small intestine, where they play a role in urea and arginine synthesis. Dietary, hormonal and physical manipulations caused varied changes of CPS, ASS and Ornt1 in the liver, but the change of citrin was not so marked as that of the others. Analysis using RT-PCR and restriction enzyme digestion revealed that the ornithine transporter most expressed is Ornt1, although Ornt2 is detectable at a minute level. All these results suggest that citrin as AGC plays a role in urea synthesis as well as many fundamental metabolic pathways in the liver, and shares metabolic functions with aralar1 in other tissues, and that Ornt1 is an important component in urea synthesis in the liver and in arginine synthesis in the small intestine during the neonatal period. 相似文献
2.
Jalil MA Begum L Contreras L Pardo B Iijima M Li MX Ramos M Marmol P Horiuchi M Shimotsu K Nakagawa S Okubo A Sameshima M Isashiki Y Del Arco A Kobayashi K Satrústegui J Saheki T 《The Journal of biological chemistry》2005,280(35):31333-31339
Aralar is a mitochondrial calcium-regulated aspartate-glutamate carrier mainly distributed in brain and skeletal muscle, involved in the transport of aspartate from mitochondria to cytosol, and in the transfer of cytosolic reducing equivalents into mitochondria as a member of the malate-aspartate NADH shuttle. In the present study, we describe the characteristics of aralar-deficient (Aralar-/-) mice, generated by a gene-trap method, showing no aralar mRNA and protein, and no detectable malate-aspartate shuttle activity in skeletal muscle and brain mitochondria. Aralar-/- mice were growth-retarded, exhibited generalized tremoring, and had pronounced motor coordination defects along with an impaired myelination in the central nervous system. Analysis of lipid components showed a marked decrease in the myelin lipid galactosyl cerebroside. The content of the myelin lipid precursor, N-acetylaspartate, and that of aspartate are drastically decreased in the brain of Aralar-/- mice. The defect in N-acetylaspartate production was also observed in cell extracts from primary neuronal cultures derived from Aralar-/- mouse embryos. These results show that aralar plays an important role in myelin formation by providing aspartate for the synthesis of N-acetylaspartate in neuronal cells. 相似文献
3.
Araceli del Arco Julián Morcillo Juan Ramon Martínez-Morales Carmen Galián Vera Martos Paola Bovolenta Jorgina Satrústegui 《European journal of biochemistry》2002,269(13):3313-3320
Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues. 相似文献
4.
T Sugano K Nishimura N Sogabe M Shiota N Oyama S Noda M Ohta 《Archives of biochemistry and biophysics》1988,264(1):144-154
The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle. 相似文献
5.
《BBA》1987,893(1):7-12
The effect of increasing bilirubin concentrations upon the catalytic activity of a series of dehydrogenases and aminotransferases was examined. The particular enzymes were chosen to examine the effect of bilirubin upon the activity of enzymes responsible for the indirect transfer of reducing equivalents across the inner mitochondrial membrane. Malate dehydrogenase was inhibited at very low concentrations of bilirubin and showed competitive inhibition with respect to coenzyme of 2 μM, while the cytosolic form of this enzyme exhibited a 15 μM inhibition constant. Cytosolic glycerol-3-phosphate dehydrogenase was not appreciably inhibited by bilirubin. Both the mitochondrial and cytosolic forms of aspartate aminotransferase showed moderate competitive bilirubin inhibition with respect to substrates with a Ki of 30 μM with respect to 2-oxoglutarate and a Ki of 80 μM with respect to aspartate. Preincubation studies indicated that inhibition was reversible for all enzymes examined. These results are interpreted in terms of the inhibition of the malate-aspartate shuttle by relatively low concentrations of bilirubin. 相似文献
6.
The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells 总被引:3,自引:0,他引:3
Rubi B del Arco A Bartley C Satrustegui J Maechler P 《The Journal of biological chemistry》2004,279(53):55659-55666
The NADH shuttle system, which transports reducing equivalents from the cytosol to the mitochondria, is essential for the coupling of glucose metabolism to insulin secretion in pancreatic beta cells. Aralar1 and citrin are two isoforms of the mitochondrial aspartate/glutamate carrier, one key constituent of the malate-aspartate NADH shuttle. Here, the effects of Aralar1 overexpression in INS-1E beta cells and isolated rat islets were investigated for the first time. We prepared a recombinant adenovirus encoding for human Aralar1 (AdCA-Aralar1), tagged with the small FLAG epitope. Transduction of INS-1E cells and isolated rat islets with AdCA-Aralar1 increased aralar1 protein levels and immunostaining revealed mitochondrial localization. Compared with control INS-1E cells, overexpression of Aralar1 potentiated metabolism secretion coupling stimulated by 15 mm glucose. In particular, there was an increase of NAD(P)H generation, of mitochondrial membrane hyperpolarization, ATP levels, glucose oxidation, and insulin secretion (+45%, p < 0.01). Remarkably, this was accompanied by reduced lactate production. Rat islets overexpressing Aralar1 secreted more insulin at 16.7 mm glucose (+65%, p < 0.05) compared with controls. These results show that aspartate-glutamate carrier capacity limits glucose-stimulated insulin secretion and that Aralar1 overexpression enhances mitochondrial metabolism. 相似文献
7.
T Matsuno 《Cell biology international reports》1989,13(9):739-745
The malate-aspartate shuttle activity for the reoxidation of cytosolic NADH was studied in MC29 avian hepatoma cells whose mitochondria preferentially utilized glutamine and produced aspartate for ATP formation. The tumour cells showed reoxidation of NADH, as evidenced by the accumulation of pyruvate, when incubated aerobically with L-lactate. The involvement of the respiratory chain and transaminase in the process was demonstrated by the addition of specific inhibitors. When the tumour cells were cultured in Eagle's medium with aminooxyacetate or in the absence of glutamine, a marked reduction in the cellular NAD/NADH ratio was observed. These results indicate that the malate-aspartate shuttle was actively functioning in the tumour cells and that this hepatoma may provide a suitable system for the investigation of the bioenergetics of malignant cells. 相似文献
8.
Pardo B Contreras L Serrano A Ramos M Kobayashi K Iijima M Saheki T Satrústegui J 《The Journal of biological chemistry》2006,281(2):1039-1047
Aralar, the neuronal Ca(2+)-binding mitochondrial aspartate-glutamate carrier, has Ca(2+) binding domains facing the extramitochondrial space and functions in the malate-aspartate NADH shuttle (MAS). Here we showed that MAS activity in brain mitochondria is stimulated by extramitochondrial Ca(2+) with an S(0.5) of 324 nM. By employing primary neuronal cultures from control and aralar-deficient mice and NAD(P)H imaging with two-photon excitation microscopy, we showed that lactate utilization involves a substantial transfer of NAD(P)H to mitochondria in control but not aralar-deficient neurons, in agreement with the lack of MAS activity associated with aralar deficiency. The increase in mitochondrial NAD(P)H was greatly potentiated by large [Ca(2+)](i) signals both in control and aralar-deficient neurons, showing that these large signals activate the Ca(2+) uniporter and mitochondrial dehydrogenases but not MAS activity. On the other hand, small [Ca(2+)](i) signals potentiate the increase in mitochondrial NAD(P)H only in control but not in aralar-deficient neurons. We concluded that neuronal MAS activity is selectively activated by small Ca(2+) signals that fall below the activation range of the Ca(2+) uniporter and plays an essential role in mitochondrial Ca(2+) signaling. 相似文献
9.
Gellerich FN Gizatullina Z Trumbekaite S Korzeniewski B Gaynutdinov T Seppet E Vielhaber S Heinze HJ Striggow F 《The Biochemical journal》2012,443(3):747-755
The glutamate-dependent respiration of isolated BM (brain mitochondria) is regulated by Ca2+(cyt) (cytosolic Ca2+) (S0.5=225±22 nM) through its effects on aralar. We now also demonstrate that the α-glycerophosphate-dependent respiration is controlled by Ca2+(cyt) (S0.5=60±10 nM). At higher Ca2+(cyt) (>600 nM), BM accumulate Ca2+ which enhances the rate of intramitochondrial dehydrogenases. The Ca2+-induced increments of state 3 respiration decrease with substrate in the order glutamate>α-oxoglutarate>isocitrate>α-glycerophosphate>pyruvate. Whereas the oxidation of pyruvate is only slightly influenced by Ca2+(cyt), we show that the formation of pyruvate is tightly controlled by Ca2+(cyt). Through its common substrate couple NADH/NAD+, the formation of pyruvate by LDH (lactate dehydrogenase) is linked to the MAS (malate-aspartate shuttle) with aralar as a central component. A rise in Ca2+(cyt) in a reconstituted system consisting of BM, cytosolic enzymes of MAS and LDH causes an up to 5-fold enhancement of OXPHOS (oxidative phosphorylation) rates that is due to an increased substrate supply, acting in a manner similar to a 'gas pedal'. In contrast, Ca2+(mit) (intramitochondrial Ca2+) regulates the oxidation rates of substrates which are present within the mitochondrial matrix. We postulate that Ca2+(cyt) is a key factor in adjusting the mitochondrial energization to the requirements of intact neurons. 相似文献
10.
T Matsuno 《The International journal of biochemistry》1992,24(2):313-315
1. The reoxidation of cytosolic NADH was studied in a line of human hepatoma cells (HuH13) whose mitochondria preferentially utilized glutamine for ATP formation. 2. The tumor cells showed mitochondrial reoxidation of NADH, as evidenced by the accumulation of pyruvate, when incubated aerobically with L-lactate. The involvement of the respiratory chain was demonstrated by the addition of specific inhibitors. 3. Glutamine oxidation proceeded in the tumor mitochondria exclusively via a pathway involving transamination. Malate stimulated aspartate production from glutamine. 4. When the tumor cells were cultured in Eagle's medium with aminooxyacetate or in the absence of glutamine, a marked reduction in the cellular NAD/NADH ratio was observed. 5. These results indicate that the malate-aspartate shuttle was functioning in the tumor cells. 相似文献
11.
12.
Richard G. Hansford 《Journal of bioenergetics and biomembranes》1994,26(5):495-508
A model has been proposed in which mitochondrial Ca2+ ion transport serves to regulate mitochondrial matrix free Ca2+ ([Ca2+]m), with the advantage to the animal that this allows the regulation of pyruvate dehydrogenase and the tricarboxylate cycle in response to energy demand. This article examines recent evidence for dehydrogenase activation and for increases in [Ca2+]m in response to increased tissue energy demands, especially in cardiac myocytes and in heart. It critiques recent results on beat-to-beat variation in [Ca2+]m in cardiac muscle and also briefly surveys the impact of mitochondrial Ca2– transport on transient changes in cytosolic free Ca2+ in excitable tissues. Finally, it proposes that a failure to elevate [Ca2+]m sufficiently in response to work load may underlie some cardiomyopathies of metabolic origin. 相似文献
13.
14.
15.
Lactate production by liver slices from fetal rats (17th–18th day of gestation) is enhanced about two fold by aminooxyacetate, an inhibitor of aspartate transaminase (EC 2.6.1.1). Such an effect is consistent with an increase of the cytosolic NAD-redox state owing to the parallel fall in the pyruvate level, whereas the glycolytic flux does not seem to be influenced appreciably. Indeed, although the inhibitor causes a marked increase of fructose 1,6-diphosphate, glucose 6-phosphate decreases only slightly. These results suggest that in fetal rat liver the malate-aspartate shuttle is operative in the reoxidation of cytosolic NADH produced during aerobic glycolysis. 相似文献
16.
Territo PR French SA Dunleavy MC Evans FJ Balaban RS 《The Journal of biological chemistry》2001,276(4):2586-2599
Parallel activation of heart mitochondria NADH and ATP production by Ca(2+) has been shown to involve the Ca(2+)-sensitive dehydrogenases and the F(0)F(1)-ATPase. In the current study we hypothesize that the response time of Ca(2+)-activated ATP production is rapid enough to support step changes in myocardial workload ( approximately 100 ms). To test this hypothesis, the rapid kinetics of Ca(2+) activation of mV(O(2)), [NADH], and light scattering were evaluated in isolated porcine heart mitochondria at 37 degrees C using a variety of optical techniques. The addition of Ca(2+) was associated with an initial response time (IRT) of mV(O(2)) that was dose-dependent with a minimum IRT of 0.27 +/- 0.02 s (n = 41) at 535 nm Ca(2+). The IRTs for NADH fluorescence and light scattering in response to Ca(2+) additions were similar to mV(O(2)). The Ca(2+) IRT for mV(O(2)) was significantly shorter than 1.6 mm ADP (2.36 +/- 0.47 s; p < or = 0.001, n = 13), 2.2 mm P(i) (2.32 +/- 0.29, p < or = 0.001, n = 13), or 10 mm creatine (15.6.+/-1.18 s, p < or = 0.001, n = 18) under similar experimental conditions. Calcium effects were inhibited with 8 microm ruthenium red (2.4 +/- 0.31 s; p < or = 0.001, n = 16) and reversed with EGTA (1.6 +/- 0.44; p < or = 0.01, n = 6). Estimates of Ca(2+) uptake into mitochondria using optical Ca(2+) indicators trapped in the matrix revealed a sufficiently rapid uptake to cause the metabolic effects observed. These data are consistent with the notion that extramitochondrial Ca(2+) can modify ATP production, via an increase in matrix Ca(2+) content, rapidly enough to support cardiac work transitions in vivo. 相似文献
17.
L López-Alarcón M L Eboli E De Liberali G Palombini T Galeotti 《Archives of biochemistry and biophysics》1979,192(2):391-395
Actively glycolyzing Ehrlich-Lettré ascites tumor cells have been tested for their ability to reoxidize into the mitochondria reduced nicotinamide adenine dinucleotide by the malate-aspartate shuttle. The aspartate transaminase inhibitor aminooxyacetate has been used as a tool for evaluating it. Measurements of the free cytosolic ratio indicate that it increases gradually in the inhibitor-treated cells up to a value about ninefold higher than in the controls after 30 min of glycolytic activity. Fructose 1, 6-diphosphate and dihydroxyacetone phosphate reach a steady-state level after 5 min of incubation in the untreated cells, whereas they accumulate in large amounts in the inhibited cells. Correspondingly, a decrease in 3-phosphoglycerate concentration is observed. On the other hand, the rate of glucose utilization is affected slightly only during long observation times. From these results it may be established that in Ehrlich ascites cells reducing equivalents generated in the cytosol during aerobic glycolysis strongly influence the NAD redox state when their intramitochondrial translocation is prevented by the inactivation of the malate-aspartate shuttle. 相似文献
18.
The nutrient requirements and metabolic pathways used by the developing embryo transition from predominantly pyruvate during early cleavage stages to glucose at the blastocyst; however, the complexities involved in the regulation of metabolism at different developmental stages are not clear. The aims of this study were to examine the role of the malate-aspartate shuttle (MAS) in nutrient metabolism pathways in the developing mouse blastocyst and the consequences of impaired metabolism on embryo viability and fetal and placental growth. Eight-cell-stage mouse embryos were cultured in the presence of the MAS inhibitor amino-oxyacetate, with or without pyruvate as an energy substrate in the media. When the MAS was inhibited, the rate of glycolysis and lactate production was significantly elevated and glucose uptake reduced, relative to control cultured embryos in the presence of pyruvate. Despite these changes in embryo metabolism, this did not influence development to the blastocyst stage, but it did reduce the number of inner cell mass and trophectoderm cells. When these embryos were transferred to psuedopregnant females, inhibition of the MAS significantly reduced the proportion of embryos that implanted and developed into fetuses on Day 18 of pregnancy. Finally, fetal growth was reduced while placental weight was maintained, leading to a decreased fetal:placental weight ratio relative to control embryos. These results suggest that impaired metabolism of glucose in the blastocyst via the MAS alters the ability of the embryos to implant and form a pregnancy and leads to reduced fetal weight, likely via altered placental development and function. 相似文献
19.
Miyamoto S Howes AL Adams JW Dorn GW Brown JH 《The Journal of biological chemistry》2005,280(46):38505-38512
We previously reported that constitutively activated Galpha(q) (Q209L) expression in cardiomyocytes induces apoptosis through opening of the mitochondrial permeability transition pore. We assessed the hypothesis that disturbances in Ca(2+) handling linked Galpha(q) activity to apoptosis because resting Ca(2+) levels were significantly increased prior to development of apoptosis. Treating cells with EGTA lowered Ca(2+) and blocked both loss of mitochondrial membrane potential (an indicator of permeability transition pore opening) and apoptosis (assessed by DNA fragmentation). When cytosolic Ca(2+) and mitochondrial membrane potential were simultaneously measured by confocal microscopy, sarcoplasmic reticulum (SR)-driven slow Ca(2+) oscillations (time-to-peak approximately 4 s) were observed in Q209L-expressing cells. These oscillations were seen to transition into sustained increases in cytosolic Ca(2+), directly paralleled by loss of mitochondrial membrane potential. Ca(2+) transients generated by caffeine-induced release of SR Ca(2+) were greatly prolonged in Q209L-expressing cells, suggesting a decreased ability to extrude Ca(2+). Indeed, the Na(+)/Ca(2+) exchanger (NCX), which removes Ca(2+) from the cell, was markedly down-regulated at the mRNA and protein levels. Adenoviral NCX expression normalized cytosolic Ca(2+) levels and prevented DNA fragmentation in cells expressing Q209L. Interestingly, constitutively activated Akt, which rescues cells from Q209L-induced apoptosis, prevented the decrease in NCX expression, normalized cytosolic Ca(2+) levels and spontaneous Ca(2+) oscillations, shortened caffeine-induced Ca(2+) transients, and prevented loss of the mitochondrial membrane potential. Our findings demonstrate that NCX down-regulation and consequent increases in cytosolic and SR Ca(2+) can lead to Ca(2+) overloading-induced loss of mitochondrial membrane potential and suggest that recovery of Ca(2+) dysregulation is a target of Akt-mediated protection. 相似文献
20.
The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues
The pyruvate, NAD(+)-isocitrate and 2-oxoglutarate dehydrogenases are key regulatory enzymes in intramitochondrial oxidative metabolism in mammalian tissues, and can all be activated by increases in Ca2+ in the micromolar range. There is now mounting evidence that hormones and other stimuli which act by increasing cytosolic Ca2+ also, as a result, cause increases in mitochondrial matrix Ca2+ and hence activation of these enzymes, suggesting that the primary physiological function of mitochondrial Ca2(+)-transport is to be involved in this relay mechanism. This may also explain how in such circumstances rates of ATP production may be increased to meet the greater demand, but without any decreases in ATP/ADP occurring. 相似文献