首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles.  相似文献   

2.
Molecular imprinting is a promising way to create polymer materials that can be used as artificial receptors, and have anticipated use in synthetic imitation of natural antibodies. In case of successful imprinting, the selectivity and affinity of the imprint for the substrate molecules are comparable with those of natural counterparts. Various calculation methods can be used to estimate the effects of a large range of imprinting parameters under different conditions, and to find better ways to improve polymer characteristics. However, one difficulty is that properties such as hydrogen bonding can be modeled only by quantum methods that demand a lot of computational resources. Combined quantum mechanics/molecular mechanics (QM/MM) methods allow the use of MM and QM for different parts of the modeled system. In present study this method was realized in the NWChem package to compare estimations of the stability of tri-O-acetyl adenosine–monomer pre-polymerization complexes in benzene solution with previous results under vacuum.  相似文献   

3.
《IRBM》2008,29(2-3):89-104
The principle of molecular imprinting has repeatedly been proven a successful and effective means of creating sites of specific recognition within polymers. After almost three decades of development, we finally have some evidence of large molecule imprinting. In this review, the authors aim to bring the molecular imprinting community up-to-date. We describe here some of the new and innovative work that endeavours to take molecular imprinting away from its chromatographic, synthetic past and make use of this technique in new, exciting and developing fields, such as drug delivery, biotechnology, biosensors, protein/drug recognition and in the development of novel materials. The main discussion analyses a variety of different two-dimensional and three-dimensional approaches recently developed for the recognition of larger molecules or biomolecules, such as proteins, viruses and cells, and how the traditional imprinting methods have been adapted to suit the mass transfer requirements of these biological templates. We also review a relatively new technique that has emerged from the imprinting approach, which aims to develop novel materials from the imprints of biological materials.  相似文献   

4.
Heparan sulfates are complex polysaccharides belonging to the family of glycosaminoglycans that participate to the regulation of cell behavior and tissue homeostasis. The biological activities conferred to heparan sulfates are largely dependent on the content and positioning of the sulfate groups along their saccharidic units. At present, identification of particular sulfation patterns in biologically relevant heparan sulfate sequences remains challenging. Although several approaches for structure analysis exist, the complexity of heparan sulfates makes new and original approaches still required. Here, we used molecular imprinting technologies to prepare a library of polyethylene glycol acrylate functionalized hydrogels with the aim to investigate their applicability as specific recognizing systems for fondaparinux, a synthetic pentasaccharide analog to the antithrombin binding site of heparin. Adequate choice of the hydrogel composition and controlling rebinding conditions were important determinants for improving the sulfated oligosaccharide recognition specificity and selectivity. Our results suggest that molecular imprinting approaches could be a possibility for the specific recognition of biologically active sequences in heparan sulfates.  相似文献   

5.
Molecular imprinting involves the synthesis of polymers in the presence of a template to produce complementary binding sites with specific recognition ability. The technique has been successfully applied as a measurement and separation technology, producing a uniquely robust and antibody-like polymeric material. Low molecular weight molecules have been extensively exploited as imprint templates, leading to significant achievements in solid-phase extraction, sensing and enzyme-like catalysis. By contrast, macromolecular imprinting remains underdeveloped, principally because of the lack of binding site accessibility. In this review, we focus on the most recent developments in this area, not only covering the widespread use of biological macro-templates but also highlighting the emerging use of synthetic macro-templates, such as dendrimers and hyperbranched polymers.  相似文献   

6.
A contributing factor to the labored advance of molecularly imprinting as a viable commercial solution to molecular recognition needs is the absence of a standard and robust method for assessing and reporting on molecular imprinted polymer (MIP) performance. The diversity and at times inappropriateness of MIP performance indicators means that the usefulness of the literature back-catalogue, for predicting, elucidating or understanding patterns in MIP efficacy, remains largely inaccessible. We hereby put forward the case that the simple binding isotherm is the most versatile and useful method of assessing and reporting MIP function, allowing direct comparison between polymers prepared and evaluated in different studies. In this study we describe how to correctly plot and interpret a bound / free isotherm and show how such plots can be readily used to predict outcomes, retro-analyze data and optimize experimental design. We propose that by adopting the use of correctly constructed isotherms as the primary form of data representation researchers will enable inter-laboratory comparisons, promote good experimental design and encourage a greater collective understanding of molecular imprinting.  相似文献   

7.
Genomic imprinting is the differential expression of maternally and paternally inherited alleles of specific genes. Several organismic level hypotheses have been offered to explain the evolution of genomic imprinting. We argue that evolutionary explanations of the origin of imprinting that focus exclusively on the organismic level are incomplete. We propose that the complex molecular mechanisms that underlie genomic imprinting originally evolved as an adaptive response to the mutagenic potential of transposable elements (TEs). We also present a model of how these mechanisms may have been co-opted by natural selection to evolve molecular features characteristic of genomic imprinting.  相似文献   

8.
Molecularly imprinted polymeric membranes   总被引:2,自引:0,他引:2  
Yoshikawa M 《Bioseparation》2001,10(6):277-286
Molecularly imprinted polymeric membranes have been emerged since 1990. Among various kinds of molecular imprinting studies, the application of molecular imprinting to membrane separation is still a novel investigation. In the present review paper, molecularly imprinted polymeric membranes are summarized and examined. The application of molecular imprinting to membrane separation shortly leads to high performance separation membranes.  相似文献   

9.
Epigenetic modifications such as DNA methylation and alterations to chromatin structure have been proposed as hallmarks of imprinting in somatic cells after fertilization. In the germ cell line, gene imprinting needs to be reset in order to transmit the correct sex-specific imprinting pattern to the next generation. The precise timing of imprint erasure and re-establishment for many genes remains to be determined and precise molecular mechanisms of genomic imprinting have not yet been fully characterized. Here, we have analysed the methylation state and DNase-I sensitivity of two genes with reciprocal genomic imprinting (U2af1-rs1 and H19 genes) in a male mouse primordial germ cell (PGC) derived cell line (EG-1), isolated post-natal spermatogonia and mature sperm cells. Our results show that establishment of imprinting of the U2af1-rs1 and H19 genes during male germ cell differentiation occurs at different stages of differentiation. Furthermore, the presence of DNase-I hypersensitive sites may constitute a molecular marker to identify alleles and subsequently acquire the appropriate methylation imprint. We propose that this molecular identifier may be present or absent for a specific gene according to the sex of the gamete.  相似文献   

10.
分子印迹技术是一种人工合成具有分子识别功能的介质的一种新技术,近年来在许多领域都得到很大的发展。本文介绍了分子印迹技术的发展现状,尤其对生物大分子的分子印迹技术进行了详细论述,对生物大分子印迹采用的功能单体、印迹分子的种类、印迹的方法、印迹的机理、存在的问题和应用的前景等分别进行了讨论。  相似文献   

11.
Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.  相似文献   

12.
Molecular imprinting has proved to be an effective technique for the creation of recognition sites on a polymer scaffold. Protein imprinting has been a focus for many chemists working in the area of molecular recognition, since the creation of synthetic polymers that can specifically recognise proteins is a very challenging but potentially extremely rewarding objective. It is expected that molecularly imprinted polymers (MIPs) with specificity for proteins will find application in medicine, diagnostics, proteomics, environmental analysis, sensors and drug delivery. In this review, the authors provide an overview of the progress achieved in the decade between 1994 and 2005, with respect to the challenging area of MIPs for protein recognition. The discussion furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages and highlighting trends and possible future directions.  相似文献   

13.
The use of a novel chiral functional monomer system in molecular imprinting protocols is described. The monomer, dibenzyl (2R,3R)-O-monoacryloyl tartrate, possesses a hydroxyl moiety which can be used to direct template-functional monomer interactions during molecular imprinting polymerization. This system simultaneously positions benzyl ester-protected carboxyl groups in close proximity to the template, which upon deprotection yield recognition sites with stronger ligand-binding capacities. Furthermore, the inherent chirality of the monomer engenders the polymer with an inbuilt preference for a given stereoisomer. Application of the system to the molecular imprinting of the cinchonidine alkaloids (+)-cinchonine and (-)-cinchonidine yielded stereoselective polymers. The effect of imprinting (+)-cinchonine produced a polymer which more than reversed the inherent chiral selectivity of the chiral monomer residues present in the matrix.  相似文献   

14.
Although most imprinted genes display parent-origin-specific gene expression in tissues where they are transcribed, some genes are imprinted in a tissue-specific manner. Genes that show brain-specific imprinting or brain-specific lack of imprinting present a unique opportunity to study the process of imprinting during tissue differentiation. In this review, I introduce the systematic study of brain-cell-lineage-specific imprinting using a primary brain cell culture system, where neurons or glial cells are cultured separately. Two reports using the primary brain cell culture revealed brain-cell-lineage-specific imprinting in Ube3a and Igf2r, which had previously been described to show brain-specific imprinting and brain-specific lack of imprinting, respectively. Such brain-cell-lineage-specific imprinting was associated with cell-specific epigenetic modifications, especially with their reciprocally imprinted antisense non-coding RNAs, Ube3a-ATS and Air. These results emphasize the necessity of imprinting analysis at the cell level rather than in whole brain tissue during brain differentiation. The brain cell culture system provides us with a new powerful tool to understand the molecular mechanism of brain-specific imprinting.  相似文献   

15.
Both adrenocorticotrop hormone (ACTH) and the synthetic enkephalins investigated evoked imprinting in Tetrahymena and led to increased hormone binding at further contact with ACTH. Neither molecule evoked, however, imprinting for the enkephalins. The pentapeptide enkephalin containing also proline had the most pronounced imprinting effect and, when given together with ACTH, it increased the imprintatory effect of ACTH considerably. In all the situations investigated the enkephalin tetrapeptide inhibited the positive effect of the enkephalin pentapeptide, whereas it did not influence the imprintatory effect of ACTH. Similarities can be found between the pharmacological and imprinting effects of enkephalin in mammals, and the effects seen in the present investigations.  相似文献   

16.
Confocal microscopic experiments demonstrate the presence of insulin in Tetrahymena, observed also in earlier experiments. However, there is a broad spectrum of insulin-containing cells from the immunocytochemically insulin-free, to the strongly antibody-reactive ones. During 1 h of insulin treatment (imprinting) the cells gradually bind and take up insulin, and the process is slow. One minute after the start of treatment there is not difference in the number of insulin antibody-reactive cells and amount of insulin. After 5 or 10 min the cells bind and contain more insulin and after 1 h most of the cells are densely packed with the insulin antibody-reactive material. Insulin imprinting accelerates binding and uptake alike: 48 h after imprinting and 1 min after the start of the second treatment, more insulin is present on the surface and inside the cells, than after 10 min in the first-time treated cells. Theoretically, this effect of hormonal imprinting helps to maintain the species by facilitating molecular recognition and binding as well as uptake of useful molecules. The experiments also support previous observations on the parallel receptor-evoking (strengthening) and hormone-producing effect of hormonal imprinting.  相似文献   

17.
In this paper, we describe the epitope approach to molecular imprinting. The applicability of molecular imprinting, a method that allows the preparation of biomimetic compounds (artificial receptors and antibodies), is extended by this approach. Our approach makes it possible to obtain imprinted polymers selective to peptides and proteins whereas, to date, molecular imprinting has been used primarily for the preparation of polymers that selectively bind to relatively low molecular weight substances. The epitope approach is based on using (as a template) a short peptide that represents only part of a larger peptide or protein (as an epitope represents an antigen), which in turn can be recognized by the synthesized polymer. It is demonstrated that although other parts of peptides can influence the process of molecular recognition, the polymers imprinted with a short peptide efficiently recognize both the template and larger peptides (for example, oxytocin) that possess the same C-terminal part of the structure.  相似文献   

18.
Molecular imprinting is a newly developed methodology which provides molecular assemblies of desired structures and properties and is being increasingly used for several applications such as in separation processes, microreactors, immunoassays and antibody mimics, catalysis, artificial enzymes, biosensor recognition elements and bio- and chemo-sensors. The ambient processing conditions and versatility of the sol-gel process makes sol-gel glassy matrix suitable for molecular imprinting. The progress of sol-gel based molecular imprinted polymers (MIPs) for various applications can be seen from the growing number of publications. The main focus of the review is molecular imprinting in sol-gel matrix and applications of molecular imprinted sol-gel derived materials for the development of sensors. Combining sol-gel process with molecular imprinting enables to procure the sensors with greater sensitivity and selectivity necessary for sensing applications. The merits, problems, challenges and factors affecting molecular imprinting in sol-gel matrix have been discussed. Considerable attention has been drawn on recent developments like use of organically modified silane precursors (ORMOSILS) for the synthesis of hybrid molecular imprinted polymers (HMIPs) and applying surface sol-gel process for molecular imprinting. The development of molecular imprinted sol-gel nanotubes for biochemical separation and bio-imprinting is a new advancement and is under progress. Templated xerogels and molecularly imprinted sol-gel films provide a good platform for various sensor applications.  相似文献   

19.
This review article summarizes the preparation of polymers imprinted with proteins that exhibit antibody-like specificity due to the presence of well-defined recognition sites. We present the newest developments concerned with use of nanomaterials, such as magnetic and silica nanoparticles, nanowires, carbon nanotubes, and quantum dots as supports enabling the preparation of protein-imprinted polymers via surface imprinting techniques. As an alternative receptor-like synthetic materials, these conjugates are attracting a great deal of interest in various fields including proteomics, genomics, and fabrication of selective sensors. However, imprinting of large biomacromolecules such as proteins still remains a challenge due to the inherent limitations related to protein properties. In the text below, we also describe examples of applications focused on selective recognition of biomacromolecules.  相似文献   

20.
Molecularly imprinted polymers (MIPs) known as plastic antibodies (PAs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery, PAs have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. PAs are becoming an important class of synthetic materials mimicking molecular recognition by natural receptors. In addition, they have been utilized as catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography and mimics of enzymes. In this paper, first time we report the preparation and characterization of a PA for the recognition of blistering chemical warfare agent sulphur mustard (SM). The SM imprinted PA exhibited more surface area when compared to the control non-imprinted polymer (NIP). In addition, SEM image showed an ordered nano-pattern for the PA of SM that is entirely different from the image of NIP. The imprinting also enhanced SM rebinding ability to the PA when compared to the NIP with an imprinting efficiency () of 1.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号