首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Effects of removal of external Ca2+ on the cytoplasmic pH (pHc)of Chara corallina have been measured with the weak acid 5,5-dimethyl-oxazolidine-2,4-dione(DMO) as a function of external pH (pH0) and of the externalconcentration of K+. Removal of Ca2+ always decreased pHc whenpH0 was below about 6.0; the decrease was about 0.2–0.4units at pH0 5.0, increasing to about 0.5 units at pH0 4.3.When pH0 was 6.0 or higher the removal of Ca2+ had little orno effect on pHc. This situation was not altered by changingthe concentration of K+, though in some experiments at pH0 5.0–5.2there was a slight decrease in pH0 (about 0.2 units) when K+was increased from 0.2 to 2.0 mol m–3, an effect apparentlyreversed when K+ was higher (5.0 or 10.0 mol m–3). Theresults suggest that H+ transport continues in the absence ofexternal Ca2+, despite previous suggestions to the contrary,and that the H+ pump does not necessarily run near thermodynamicequilibrium with its chemical driving reaction. They indicate,rather, that the H+ pump is under kinetic control and providefurther evidence for the inadequacy of present models for theoperation of the H+ pump in charophyte cells, especially inrelation to its proposed role in regulating pHc. Key words: Chara corallina, Cytoplasmic pH, Calcium  相似文献   

2.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C–1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C–1 between 25 and 15?C, but 0.005 units?C–1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the –0.017units ?C–1 needed to maintain a constant H+/OH–1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2–HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma.  相似文献   

3.
The vacuolar pH (pHv) and the cytoplasmic pH (pHc) of the marinegiant-celled green alga Chaetomorpha darwinii were measuredby pH microelectrode techniques on extracted vacuolar sap, andby the [I4C]DMO distribution method respectively. Equilibrationof DMO occurred with a half-time of about 2 h, with an apparentPDMO of 3.6 x 10–5 cm s–1, but the vacuolar concentrationof free, undissociated DMO was always less than the externalconcentration. The explanation offered for freshwater giant-celledalgae of net DMO leakage across the plasmalemma cannotapply to Chaetomorpha darwinii, since electrically-driven DMOexit from the cytoplasm should be similar across the plasmalemmaand the tonoplast in these cells with large, vacuole-positivepotential differences across the tonoplast. pHc was accordinglycomputed assuming either tonoplast or plasmalemma equilibrationof DMO, with correction for DMO metabolism within the cell.pHc was 8.0–8.3 in the light in artificial seawater (pHoabout 8.0), was some 0.5 units lower in the dark, and was slightlylower with an external pH of 7. Vacuolar pH was 6.5–6.9,without consistent effects of illumination or of external pHof 7 rather than 8. While µH+ at the tonoplast was similarto that in giant-celled freshwater algae (although with a greatercontribution from relative to pH), µH+ at the plasmalemmawas less than 8 kJ mol–1, i.e. less than one-third ofthe value in freshwater green algae. µNa+ was some 13kJ mol–1 at the plasmalemma. The possibility that theprimary active transport process at the plasmalemma of Chaetomorphadarwinii (and certain other marine algae) is Na+ efflux ratherthan H+ efflux is discussed.  相似文献   

4.
Continuous measurements of cytoplasmic pH (pHc) in Sinapis roothairs have been carried out with double-barrelled pH-micro-electrodesin order to gain information on translocation of protons acrossthe plasmalemma and cytoplasmic pH control. (i) The cytoplasmicpH of Sinapis (7–33 ? 0–12, standard conditions)changes no more than 0.1 pHc, per pHo-unit, regardless of whethercyanide is present or not. (ii) Weak acids rapidly acidify pHcand hyperpolarize, while weak bases alkalize pHc and depolarizethe cells, (iii) 1.0 mol M,3 NaCN acidifies the cytoplasm by0.4 to 0.7 pH-units, but alkalizes the vacuole. (iv) 20 mmolm–3 CCCP has no significant effect on pHc, if added atpH 9.6 or 7.2, but acidifies pHc by 1.3 units at pH 4.3. Inthe presence of CCCP, cyanide acidifies the cytoplasm, (v) Chloridetransiently acidifies pHc, while K+, Na+, and have no significant effects, (vi) Cytoplasmic buffer capacityforms a bell-shaped curve versus pHc with an optimum of about50 mol m–3 H+pHc-unit. The modes of proton re-entry and the effects of active and passiveproton transport on cellular pH control are critically discussed.It is suggested that the proton leak, consisting of H+-cotransport(e.g. H+/Cl) rather than H+-uniport, is no threat topHc. The proton export pump, although itself reacting to changesin pHc, influences pHc only to a minor extent. It is concludedthat buffer capacity and membrane transport play moderate rolesin pHc control in Sinapis, while the interlocked H+-producingand -consuming reactions of cellular metabolism are the mainregulating factors. This makes pH control in Sinapis quite differentfrom bacterial and animal cells. Key words: Cytoplasmic pH, double-barrelled pH micro-electrode, pH control, proton transport, Sinapis  相似文献   

5.
Activity of the AE2/SLC4A2 anion exchanger is modulated acutely by pH, influencing the transporter's role in regulation of intracellular pH (pHi) and epithelial solute transport. In Xenopus oocytes, heterologous AE2-mediated Cl/Cl and Cl/HCO3 exchange are inhibited by acid pHi or extracellular pH (pHo). We have investigated the importance to pH sensitivity of the eight histidine (His) residues within the AE2 COOH-terminal transmembrane domain (TMD). Wild-type mouse AE2-mediated Cl/Cl exchange, measured as DIDS-sensitive 36Cl efflux from Xenopus oocytes, was experimentally altered by varying pHi at constant pHo or varying pHo. Pretreatment of oocytes with the His modifier diethylpyrocarbonate (DEPC) reduced basal 36Cl efflux at pHo 7.4 and acid shifted the pHo vs. activity profile of wild-type AE2, suggesting that His residues might be involved in pH sensing. Single His mutants of AE2 were generated and expressed in oocytes. Although mutation of H1029 to Ala severely reduced transport and surface expression, other individual His mutants exhibited wild-type or near-wild-type levels of Cl transport activity with retention of pHo sensitivity. In contrast to the effects of DEPC on wild-type AE2, pHo sensitivity was significantly alkaline shifted for mutants H1144Y and H1145A and the triple mutants H846/H849/H1145A and H846/H849/H1160A. Although all functional mutants retained sensitivity to pHi, pHi sensitivity was enhanced for AE2 H1145A. The simultaneous mutation of five or more His residues, however, greatly decreased basal AE2 activity, consistent with the inhibitory effects of DEPC modification. The results show that multiple TMD His residues contribute to basal AE2 activity and its sensitivity to pHi and pHo. pH regulation; histidine residues; Cl/HCO3 exchange  相似文献   

6.
Effects of Cations on the Cytoplasmic pH of Chara corallina   总被引:1,自引:0,他引:1  
Smith, F. A. and Gibson, J.–L. 1985. Effects of cationson the cytoplasmic pH of Chara corallina.—J.exp. Bot.36: 1331–1340 Removal of external Ca2+ from cells of Chara corallina lowersthe cytoplasmic pH, as determined by the intracellular distributionof the weak acid 5,5–dimethyloxazolidine2–,4–dione(DM0), when the external pH is below about 60. This effect isreversed, at least partially, by addition of the following cationsto Ca2+-free solutions: tetraethylammonium (TEA+) and Na+ at5 or 10 mol m-3, Li+ and Cs+ (10 mol m-3), or Mg2+, Mn2+ andLa3+ (02 or 05 mol m-3). Under the same conditions, increasesin pH sometimes, but not always, occur in the presence of 10mol m-3 K+ or Rb+ The results are discussed in relation to the major transportprocesses that determine pH and the electric potential differenceacross the plasma membrane, namely fluxes of H+ and of K+. Thesimplest explanation of the effects of the various cations testedin this study is that they primarily affect pHic via changesin influx of H+ but direct effects on the H+ pump or on K+ fluxesmay also be involved Key words: Chara corallina, cytoplasmic pH, cations, H+transport  相似文献   

7.
Smith, F. A. 1986. Short-term measurements of the cytoplasmicpH of Chara corallina derived from the intracellular equilibrationof 5,5-dimethyloxazolidine-2,4-dione (DMO).—J. exp. Bot.37: 1733–1745. Measurements of the time-course of influx of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione(DMO) into the cytoplasm and vacuole of internodal cells ofChara corallina, and of efflux of DMO into non-radioactive solutions,have shown that exchange of DMO across the tonoplast is veryrapid compared with exchange across the plasma membrane. Thishas made possible calculations of cytoplasmic pH from distributionof DMO between cytoplasm and vacuole over short periods (5 or10 min) even when intracellular DMO is not at flux equilibriumwith external DMO. Using this new method, estimates have beenmade of the rates and magnitude of: (i) acidification of thecytoplasm caused by acidic growth regulators (IAA and NAA) andby metabolic inhibitors (azide, DNP, CCCP and DCMU), and (ii)alkalinization caused by uptake of ammonium and methylammoniumions. The potential application of the method to future studiesof membrane transport in charophyte cells is assessed. Key words: Charophyles, cytoplasmic pH.  相似文献   

8.
The membrane potential of Chara corallina Klein ex Willd, emR.D.W. displays an oscillatory behaviour in response to an appliedcurrent step. The relative amplitude and the frequency of oscillationof the overshoot increase with the strength of the current. Increasing temperature from 10 °C to 30 °C decreasesboth the relative overshoot amplitude and the static membraneresistance. The activation energy calculated from the Arrheniusplot of the frequency of the overshoot has a value of 36.1±2.3kJ mol–1. Raising the external pH from 5.0 to 6.0 decreases the relativeamplitude of the overshoot and increases the steady state membraneresistance. Treating the cells for 30 s with 0.1 mol m–3 N-ethylmaleimideinduces a rapid fall in both static membrane resistance andovershoot. These results are interpreted in terms of changes in potassiumchannels conductance. Key words: Chara corallina, Membrane potential, Potassium channels conductance  相似文献   

9.
36C1O3/NO3 influx into Chara cells was found to be sensitiveto pHo and a maximum was found at pHo = 4.5. By contrast 14Cmethylamine influx into Chara showed a maximum at pHo = 8.5,and at this pHo influx rates were about 150 times higher thanrates of 36C1O3/NO3 influx. However, at pHo = 4.5, 36C1O3/NO3influx rates were, in some cases, comparable with rates of 14Cmethylamine influx. 36C1O3/NO3 influx into Chara cells was stimulatedby Rb +, K+, Na +, and NH4+, but not by Cs+ or Li +. NO3 andCl reduced 14C methylamine influx into Chara by 30%. NH4+ causedvery considerable inhibition of 14C methylamine influx intoChara, but had no effect on 36C1O3/NO3 influx in the presenceof K +. Net NO3 uptake into Chara was completely prevented byNH4+ even at relatively low NH4+ concentrations (25 mmol m –3).This latter effect was reversed by diethylstilbestrol (DES).Evidence is presented for the stimulation of NO3 efflux by NH4+as the mechanism responsible for the immediate effects of NH4+on net NO3 uptake into Chara cells. Key words: Chara, 14C methylamine, 36ClO3, pH  相似文献   

10.
Regulation of the epithelial Na(+) channel by extracellular acidification   总被引:2,自引:0,他引:2  
The effect of extracellular acidification wastested on the native epithelial Na+ channel (ENaC) in A6epithelia and on the cloned ENaC expressed in Xenopusoocytes. Channel activity was determined utilizing blocker-inducedfluctuation analysis in A6 epithelia and dual electrode voltage clampin oocytes. In A6 cells, a decrease of extracellular pH(pHo) from 7.4 to 6.4 caused a slow stimulation of theamiloride-sensitive short-circuit current (INa)by 68.4 ± 11% (n = 9) at 60 min. This increaseof INa was attributed to an increase of openchannel and total channel (NT) densities. Similar changes were observed with pHo 5.4. The effects ofpHo were blocked by buffering intracellularCa2+ with 5 µM1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Inoocytes, pHo 6.4 elicited a small transient increase of theslope conductance of the cloned ENaC (11.4 ± 2.2% at 2 min)followed by a decrease to 83.7 ± 11.7% of control at 60 min (n = 6). Thus small decreases of pHostimulate the native ENaC by increasing NT butdo not appreciably affect ENaC expressed in Xenopus oocytes.These effects are distinct from those observed with decreasingintracellular pH with permeant buffers that are known to inhibit ENaC.

  相似文献   

11.
We report, for the epithelialNa+ channel (ENaC) in A6 cells,the modulation by cell pH (pHc)of the transepithelial Na+ current(INa), thecurrent through the individual Na+channel (i), the openNa+ channel density(No), and thekinetic parameters of the relationship betweenINa and theapical Na+ concentration. Thei andNo were evaluatedfrom the Lorentzian INa noise inducedby the apical Na+ channel blocker6-chloro-3,5-diaminopyrazine-2-carboxamide.pHc shifts were induced, understrict and volume-controlled experimental conditions, byapical/basolateral NH4Cl pulses orbasolateral arrest of theNa+/H+exchanger (Na+ removal; block byethylisopropylamiloride) and were measured with the pH-sensitive probe2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Thechanges in pHc were positivelycorrelated to changes inINa and theapically dominated transepithelial conductance. The sole pHc-sensitive parameter underlyingINa wasNo. Only thesaturation value of theINa kinetics wassubject to changes in pHc.pHc-dependent changes inNo may be causedby influencingPo, the ENaC openprobability, or/and the total channel number,NT = No/Po.

  相似文献   

12.
Steigner, W. Khler, K., Simonis, W. and Urbach, W. 1988. Transientcytoplasmic pH changes in correlation with opening of potassiumchannels in Eremosphaera.—J. exp. Bot. 39: 23–36. The role of the cytoplasmic pH (pHc) of Eremosphaera viridisin the signal transduction chain after light-off from the chloroplaststo the K+ channels in the plasmalemma of this unicellular algawas investigated. The temporary opening of K+ channels is indicatedby a transient hypcrpolarization (TP). To record rapid changesof pHc, continuous measurements with pH sensitive micro-electrodeswere carried out. (i) Under normal conditions pHc in the light(7·56 ±0·2) did not differ from pHc inthe dark (7·62 ±0·2). (ii) The vacuolepH ranged between 4·8 and 5·2. (iii) After light-offa rapid transient acidification of pHc O19±0·07occurred and a TP was released, (iv) In every case, the startof the transient acidification after light-off preceded thehyperpolarization by about 3s. (v) Light-on caused a rapid transientalkalinization but never a TP. (vi) Change to acid externalmedium (3.2) transiently acidified the cytoplasm and was ableto release a TP. (vii) After addition of NH4Cl, pHc again showeda rapid transient acidification and the release of a TP. The origin of the protons appearing in the cytoplasm after light-offis discussed critically with respect to the buffer capacity.Either direct or indirect translocation is a possible mechanismfor the movement of H+ from the chloroplasts into the cytoplasm.The intracellular acidification and its relation to the openingof potassium channels in the plasmalemma leads us to suggestthat a sudden change of pHc is a potent internal signal factorin Eremosphaera viridis. Key words: Cytoplasmic pH, transient potential, K+–channels, Eremosphaera viridis  相似文献   

13.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

14.
Effects of the intracellular H+ concentration on the membranepotential and membrane resistance of tonoplast-free cells ofChara australis were examined under light and dark conditions.Cells were made tonoplast-free by perfusing the vacuole withmedia containing 5 mM EGTA and 30 mM buffers of various pH values.The electrogenic pump was stopped by removing the intracellularATP. The ATP-dependent part of the membrane potential was largeat pH1 6.2 and 6.9, but decreased in both the acidic (pH1 5.1,5.7) and alkaline (pH1 7.9, 8.7) ranges. Assuming that the putativeelectrogenic H+ pump acts solely as a current source, we estimatedthe current and the work done by the pump. Both the currentand the work were at a maximum at pH1 6.9, but decreased tosome extent at pH1 7.9–8.7 and decreased greatly at pH15.7–5.1. Light caused a significant membrane hyperpolarization at pH16.2–7.9, but only a slight hyperpolarization at pH1 5.1,5.7 and 8.7. The presence of light-induced hyperpolarizationat pH1 lower than 6.2 suggests that acidification of the cytoplasmupon illumination does not cause activation of the putativeH+ pump. Membrane resistance was very high at pH1 5.1 and 5.7 and verylow at pH1 8.7. The very high Rm values at pH1 5.1 and 5.6 arebelieved to be related to inhibition of the activity of thepump. (Received June 20, 1979; )  相似文献   

15.
Ammonia (pKa 9.25) and methylamine (pKa, 10.65) increase cytoplasmicpH and stimulate Cl influx in Chara corallina, theseeffects being associated with influx of the amine cations ona specific porter. The weak base imidazole (pKa 6.96) has similareffects but diffuses passively into the cell both as an unionizedbase and as a cation. When the external pH is greater than 6.0influx of the unionized species predominates. Imidazole accumulates to high concentrations in the vacuole,where it is protonated. Cytoplasmic pH and vacuolar pH riseby only 0.2–0.3 units, suggesting a large balancing protoninflux across the plasma membrane. Balance of electric chargeis partially maintained by net efflux of K+ and net influx ofCl. Calculation of vacuolar concentrations of imidazole(from (14C] imidazole uptake, assuming that there is no metabolism)plus K+ and Na+ indicates an excess of cations over inorganicanions (Cl). However, although the osmotic potentialof the cells increases, also indicating increased solute concentrations,the increase is less than that predicted by the calculated ionicconcentrations. This discrepancy remains to be resolved. Becausethe osmotic potential also increases when imidazole is absorbedfrom Cl-free solutions it is likely that maintenanceof charge-balance can also involve synthesis and vacuolar storageof organic or amino acids. Key words: Imidazole, potassium, intracellular pH, membrane transport, Chara  相似文献   

16.
The pH of the cytoplasm of Chara corallina cells has been measuredwith the weak acid 5,5-dimethyloxazolidine-2,4-dione (DM0).Over an external pH range 4·5–9·5 the resultsfit the regression equation pHcytoplasm=6·28+0·22pHout. Using measured values of the electric potential difference acrossthe plasmalemma we have calculated the electrochemical potentialdifference across this membrane for H+ and Cl. Thesedata are used to test the hypothesis that the inward transportof Cl is coupled to the inthix of H+ or, which comesto the same thing, efflux of OH. One-for-one couplingwill not give net Cl uptake from solutions with pH greaterthan about 7·2, unless the cytoplasmic Cl concentrationis lower than 10 mM, or the pH just outside the membrane islower than that in the bulk solution. It is shown that net Cluptake proceeds from solutions with pH up to 9. The alternative possibility is that Cl transport is broughtabout by co-transport of two H+ for each Cl; this isnot ruled out by the results reported. Such a mechanism mightbe detectable by its electrogenic effect: although such effectshave not been detected, it is shown that they would be smallunder most conditions. Other possible mechanisms are discussed.  相似文献   

17.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

18.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

19.
The effects of light on the pH in the vacuole and the electricpotential difference across the plasmalemma and the tonoplastof Nitellopsis obtusa were investigated by means of conventionaland H+-specific glass or antimony microelectrodes. Illuminationis found to bring about a decrease in the pH of the vacuolarsap by 0.1–0.5 units concomitant with a depolarizationof the cell. The light-induced changes of the potential differenceand the vacuolar pH depend in different ways on the pH of theexternal medium (pHo). At pHo 9.0 cells exhibit great light-inducedpotential changes (up to 100 mV), but only small pH changesof the vacuolar sap. At neutral or slightly acidic pHo valuesthe amplitude of the light-induced pH changes in the vacuoleincreases up to 0.3–0.5 pH units, but the amplitudes ofthe potential changes at the plasmalemma are relatively small.At pHo 9.0 a transient acidification of the medium is observedupon illumination whereas at lower pH values light-induced alkalinizationwas only seen. Transfer of the cells from pHo 9.0 to pHo 7.5results in a cell hyperpolarization by 60–80 mV and adecrease of the vacuolar pH by 0.4–0.5 units under lightconditions but has no significant effect on the potential andthe vacuolar pH in the darkness. It is proposed that mechanismsof active H+ extrusion from the cytoplasm are located both inthe plasmalemma and the tonoplast. The observed acidificationin the vacuole appears to be determined by a light-induced increaseof the concentration of H+ in the cytoplasm. The H+ conductionof the plasmalemma seems to increase on illumination. The patternof the light-induced H+ fluxes across the tonoplast and theplasmalemma depends crucially on the extent of the light-inducedchanges in the H+ conductance and on the electrochemical gradientfor H+ at the plasmalemma.  相似文献   

20.
The 5, 5-dimethyl-[2-14C]oxazolidine-2, 4-dione (DMO) distributiontechnique for the measurement of intracellular pH has been appliedto giant cells of Hydrodictyon africanum. Significant metabolism of DMO was found in this alga; the free[DMO + DMO–] in subcellular samples is thus derived fromthe total label in cells equilibrated in [14C]DMO solutionsby measuring and subtracting the label in metabolic productsof DMO. A further problem arises from the observation that theDMO concentration in the vacuolar sap is always lower than thatpredicted by the transmembrane equilibration of undissociatedDMO from the bathing medium. This is interpreted in terms ofa finite permeability to the anion DMO–. Since the effectof PDMO– on the DMO distribution is much smaller at thetonoplast (where the transmembrane electrical potential differenceis small) than at the plasmalemma, the values of cytoplasmicpH are computed assuming equilibration of undissociated DMOacross the tonoplast. At an external pH of 7.0 the cytoplasmic pH is about 7.4; decreaseor increase of external pH by 1 unit causes a decrease and anincrease in cytoplasmic p11 respectively of about 0.2 pH units.Determinations of vo at pH 6, 7, and 8, together with an assumedconstant value of cv, permit calculations of µH+ at theplasmalemma and tonoplast. The values are relatively independentof external pH in the range pH 6–8 at 21–25 and12–14 kJ mol–1 respectively. The significance ofthese results for the regulation of intracellular pH, and forthe regulation and energising of the fluxes of ions, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号