首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(II), nickel(II), zinc(II), manganese(II), and magnesium(II) complexes of t6A (N-[9-β-D-ribofuranosylpurin-6-yl)carbamoyl] threonine and t6Ade (N6(threoninocarbonyl)adenine) were studied by potentiometric and spectroscopic methods. It was found that t6Ade has three dissociable protons in the accessible pH range (N1 and N9 of purine and carboxylate), while only two pK values are characteristic of t6A. Magnesium(II) and manganese(II) do not interact effectively with these ligands, but copper(II) and nickel(II) ions form very stable complexes with the coordination of purine N1, deprotonated amide nitrogen, and carboxy late oxygen donors.  相似文献   

2.
After reaction with alkyl iodides and subsequent oxidative removal of the M(CO)3 triprotection, molybdenum and chromium fac-LM(CO)3 complexes of cyclen (L) unexpectedly lead to N1,N7-dialkylated cyclen derivatives.  相似文献   

3.
The mononuclear manganese(III) complexes [C5H10NH2][MnL2] [L2−=a substituted N-(2-hydroxybenzyl)glycinate (hbg2−) viz. 3,5-dibromo- (3,5-Br-hbg2−), 3,5-dichloro- (3,5-Cl-hbg2−), 3-methyl-5-chloro- (3,5-Me,Cl-hbg2−), 5-bromo- (5-Br-hbg2−), 5-chloro- (5-Cl-hbg2−), 5-nitro- (5-NO2-hbg2−) or N-(5-nitro-2-hydroxybenzyl)sarcosine (5-NO2-hbs2−)] have been synthesised by reaction of the appropriate ligand with manganese(II) perchlorate under ambient conditions in a 2:1 molar ratio using piperidine as base. The structures of three of these complexes, [C5H10NH2][Mn(3,5-Cl-hbg)2] (2), [C5H10NH2][Mn(5-NO2-hbg)2] (6) and [C5H10NH2][Mn(5-NO2-hbs)2] (7) have been elucidated by single-crystal X-ray crystallography and each displays two similar, independent [MnL2] ions in the asymmetric unit linked via piperidinium cations through hydrogen bonding. The ligands co-ordinate in a facial tridentate fashion with the three donor atoms being the phenolate and carboxylate oxygens and the amine nitrogen. The geometry at the Mn centres is compressed rhombic octahedral consistent with a pseudo-Jahn–Teller compression along the Mn–O(phenolate) axis. Mean bond lengths are in the ranges 1.886–1.889 Å for the Mn–O(phenolate), 2.062–2.125 Å for the Mn–O(carboxylate) and 2.091–2.184 Å for the Mn–N(amine) distances. The magnetic susceptibility and electronic and IR spectroscopic data are discussed with reference to the crystal structures.  相似文献   

4.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

5.
Two novel complexes Co(N3)2(PNN)4 (I) and Mn(N3)2(PNN)2(CH3OH)(C2H5OH) (II) (PNN=2-(p-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3–oxide) were synthesized and characterized by infrared spectra, elemental analyses and UV–Vis techniques. The crystal structures of both complexes have been determined by X-ray diffraction analysis. Complex I is a neutral five-spin system and adopts a centrosymmetric tetragonally compressed octahedral coordination geometry in which Co(II) ion is coordinated to four radicals through the nitrogen atoms of the pyridine rings and two azide anions occupying the axial positions. Complex II is a neutral three-spin system in which Mn(II) ion is bound to two azide anions, two alcohol molecules and two radicals through the nitrogen atom of pyridine rings, and shows one-dimensional chain structure via hydrogen bonds (dON=2.78 Å). The magnetic properties for complexes I and II have been investigated in the temperature range 2–300 K. A theoretical model has been developed for complex I and the magnetic behaviors for both complexes have been discussed in detail.  相似文献   

6.
[NBun4]2[W(C3Se5)3] (C3Se52− = 1,3-diselenole-2-selone-4,5- diselenolate(2−)) was prepared by the reaction of Na2[C3Se5] with WCl6 in ethanol, followed by addition of [NBun4]Br. The cyclic voltammogram in dichloromethane exhibits two oxidation peaks at −0.04 and +0.03 V (versus SCE). The complex reacted with [Fe(C5Me5)2][BF4], iodine or [TTF]3[BF4]2 (TTF·+ = the tetrathiafulvalenium radical cation) in acetonitrile to afford the oxidized complexes [Fe(C5Me5)2]0.5[W(C3Se5)3], [NBun4]0.1[W(C3Se5)3] and [TTF]0.5[W(C3Se5)3], respectively. Current-controlled electrochemical oxidation of the complex in acetonitrile gave [NBun4]0.6[W(C3Se5)3]. The oxidized complexes exhibit electrical conductivities of 4.7×10 −5−1.5×10−3 S cm−1 at room temperature measured for compacted pellets. Electronic absorption, IR and ESR spectra of these complexes are discussed.  相似文献   

7.
The ligand 1,4,7-triazacyclononane-1,4,7-tris[2′(R)-2′-propionate](-3)((R)-tacntp3−), binds stereospecifically to transition metal ions. The structures of the complexes [Cr((R)-tacntp)]·NaBr and [Fe((R)-tacntp)]·H2O have been determined by X-ray crystallography. Both complexes have the Λ-configuration but the conformation of the chelate rings in Λ-[Cr((R)-tacntp)] is (λ,λ,λ) with a geometry close to octahedral while in Λ-[Fe((R)-tacntp)] it is (δ,δ,δ) and the geometry is closer to that of a trigonal prism. Chiral induction in the electron transfer reactions of Λ-[Co((R)-tacntp)], Λ-[Fe((R)-tacntp)] and Λ-[Mn((R)-tacntp)] with [Co((RR,SS)-chxn)3]2+ has been investigated. All three reactions are outer-sphere and four isomeric [Co((RR,SS)-chxn)3]3+ products are identified in each case. The oxidants Λ-[Fe((R)-tacntp)] and Λ-[Mn((R)-tacntp)] show very similar selectivities, quite different from those of Λ-[Co((R)-tacntp)]. Reasons for this behavior are discussed.  相似文献   

8.
The first [2,3-dialkyl-1,4-bis(1,3-dioxo-4,4,5,5-tetramethyl-2-borolanyl]-1,3-butadiene]Fe(CO)3 complexes (2, alkyl=n-butyl; 3, alkyl=cyclopentyl; 4, ‘alkyl’=phenyl; 5, alkyl=3-chloropropyl) have been prepared from the reaction of bis(cis-cyclooctadiene)Fe(CO)3 (1) with the borolanylbutadienes. The X-ray crystal structures of 2 and 3 are reported. The geometries of the coordinated ligands are compared with those of the free ligands.  相似文献   

9.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

10.
The two uncharged compounds 25,26,27,28-(2-N,N-di methyldithiocarbamoylethoxy)calix[4]arene (1) and 25,26,27,28- (2-methylthioethoxy)calix[4]arene (2) are effective extractants for transferring Hg(II), Ag(I), Pd(II) and Au(III) from aqueous solution into chloroform. The electronic absorption spectra of 1 and 2 show additional bands at long wavelength upon complexation with AuCl4, PdCl42− and PdBr42−, and analogous bands for Hg2+ and Ag+ with 1. For 1 these new bands are considered to be either of the charge transfer type or transitions within the C=S moiety. These new bands for the complexes with 2 are assigned to LMCT transitions of the S → M type. These spectral features are used to obtain information about the solution structures of the complexes that are formed between these metal ions and both 1 and 2.  相似文献   

11.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

12.
The preparation and reaction chemistry of 1,3- and 1,2-diene and related complexes derived from metal carbonyl containing anions and allenic electrophiles are addressed. The preparation of some CpFe(CO)2 η1-diene complexes and their conversion into CpFe(CO) η3-diene complexes is presented followed by reactions of CpMo(CO)3, CpW(CO)3 and CpMo(CO)2PR3 anions with allenic electrophiles which produce metal complexed cyclobutenones (via CO and alkene insertions from the initially formed product) and 1,2-diene complexes, respectively. Lastly, the reactions of PPh3(CO)3Co anions with allenic electrophiles are outlined which result in several different coordination geometries depending on the reaction conditions used.  相似文献   

13.
Two NiII complexes of 1,5-diazacyclooctane (DACO), [Ni(DACO)2]Br2 (I) and [Ni(DACO)2]Br·ClO4 (II) have been newly synthesized and characterized. Single crystal X-ray diffraction analysis of DACO and both NiII complexes reveals that DACO takes boat/chair conformation in the solid state and its NiII complexes. In complex I, NiII ion is at the center of symmetry, which is four-coordinated by nitrogen donors of DACO. However, in complex II, an unexpected coordination mode of [M(DACO)2]2+ (M=CuII and NiII) was found, in which two DACO ligands are related to each other by a mirror plane and the coordination sphere of NiII is a distorted planar geometry. Furthermore, complexes I and II form quite different packing patterns (macrocycle or chain) through hydrogen bonds, which may be a key role to stabilize the crystals. The results of theoretical calculation indicate that complex I has thermodynamic stability, while II has chemical stability. Therefore, both of them have the probability to be obtained from different reaction processes or conditions.  相似文献   

14.
We report here the synthesis, characterization and in vitro antiamoebic activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones (TSC), 1–5, and their bidentate complexes [Ru(η4-C8H12)(TSC)Cl2] 1a–5a. The biological studies of these compounds were investigated against HK-9 strain of Entamoeba histolytica and the concentration causing 50% cell growth inhibition (IC50) was calculated in the micromolar range. The ligands exhibited antiamoebic activity in the range (2.05–5.29 μM). Screening results indicated that the potencies of the compounds increased by the incorporation of ruthenium(II) in the thiosemicarbazones. The complexes 1a–5a showed antiamoebic activity with an IC50 of 0.61–1.43 μM and were better inhibitors of growth of E. histolytica, based on IC50 values. The most promising among them is Ru(II) complex 2a having 1,2,3,4-tetrahydroquinoline as N4 substitution.  相似文献   

15.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

16.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

17.
Cyclic voltammetry at a micro electrode of Co(II) salen, Fe(II) salen, electrode generated Fe(II)(acac)2, Fe(II) (salicylaldehyde)2, Fe(II) (salicylaldoxime)2, Fe(II) (bipy)3, Fe(II) (bipy)2, Co(II) (bipy)3, Co(II) (benzacac)2, and electrode generated Co(acac)2 in oxygen saturated aprotic solvents show positive shift of the O2 sigmoidal wave, as well as enhancement of the limiting current in the case of the first five compounds. In the case of Co(II) (bipy)3 the slope of the sigmoidal wave due to O2 becomes more positive, while for the other two Co(II) complexes there is no change except a small decrease in the wave height. The data are used to correlate and predict the O2 binding properties of the chelates in solution. The data for the diketone complexes of Co(II) indicate absence of any direct association, which is in line with the interpretation offered in the literature on the mechanism of their catalytic role in the O2 oxidation of substrates. The mechanism of the autoxidation of dimethylformamide in the presence of Fe(III) (bipy)3 and Cu(II) (bipy)2 is elucidated by the observation that these higher valent compounds are reduced to their next lower oxidation state by DMF.  相似文献   

18.
New manganese(III) complexes of Hphox (2-(2′-hydroxyphenyl)-oxazoline) and HClphox (2-(5′-chloro-2′-hydroxyphenyl)-oxazoline) have been synthesised. The X-ray structures of [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2](H2O)2 and [Mn(Clphox)2(MeOH)2](ClO4) show the manganese(III) ions to be octahedrally coordinated with methanol or perchlorate at the axial coordination sites. The cyclic voltammograms of the complexes, with the exception of [Mn(phox)2(acac)] (Hacac=2,4-pentanedione), show an irreversible reduction wave of manganese(III) to manganese(II). After addition of an excess of 1-methylimidazole (1-Meim), the reduction process shifts towards lower potentials and becomes (quasi-) reversible, indicating that the presence of 1-Meim affects the catalytic efficiency of the complexes. The complexes catalyse the epoxidation of styrene by dihydrogen peroxide. The cumulative turnover numbers towards styrene oxide obtained after 15 min. vary from 16 for [Mn(Clphox)2(MeOH)2](ClO4) to 26 for [Mn(phox)2(acac)]. Ligand degradation appears to be the limiting factor for obtaining higher turnover numbers.  相似文献   

19.
Cationic palladium(II) complexes of the type [L2Pd(CH3)(CH3CN)]BF4 (L2 = 1,3-bis(diphenylphosphino)propane (Dppp) or 1,2-bis(2,5-dimethylphospholano)benzene (Me-Duphos)) were found to catalyze the alternating copolymerization of ethene, propene and cyclopentene with sulfur dioxide, as well as the terpolymerization of ethene, propene and sulfur dioxide. The resultant materials are high melting solids with an alternating alkene-SO2 structure and an exclusive head-to-tail enchainment for propene.  相似文献   

20.
During the ESR spectroscopic titration of nitrosyl-iron bleomycin, ON---Fe(II)Blm, with DNA, its metal domain undergoes a change in environment as the DNA base pair to drug ratio increases to 50 to 1. The 15N---O stretching frequency of ON---Fe(II)Blm occurs at 1589 cm−1, similar to that for nitrosyl hemoglobin and myoglobin. Upon addition of DNA (3 base pairs per drug molecule), this vibration is substantially broadened. Injection of O2 into a solution of ON---Fe(II)BlmDNA converts the ESR signal of the nitrosyl species to low spin Fe(III) BlmDNA. NO is largely oxidized to NO2. The combination of these products suggests that the initial reaction of ON---Fe(II)Blm with O2 generates Fe(III)Blm and peroxynitrite, O2NO. If peroxynitrite is formed in the reaction, it does not cause detectable DNA damage. The structural integrity of a supercoiled DNA plasmid, pBR322, is not compromised and no base propenals are produced during this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号