首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Oxalic acid (1 mM) when applied as a foliar spray to rice plants induced resistance to challenge infection with Rhizoctonia solani, the rice sheath blight pathogen. Maximum reduction in sheath blight incidence was observed when the plants were sprayed with oxalic acid three days before inoculation with the fungus. The biochemical alterations in rice plants treated with oxalic acid was also investigated. When rice plants were treated with oxalic acid, a two-fold increase in phenolic content in leaf sheaths was recorded three days after treatment. Phenylalanine ammonia-lyase and peroxidase activities increased significantly starting from two days after treatment. Peroxidase (PO) isozyme analysis indicated that PO-3 and PO-4 were induced two days after treatment with oxalic acid. Western blot analysis revealed that two chitinases (28 and 35 kDa) and two β-1,3-glucanases (30 and 32 kDa) were strongly induced in rice sheaths four to six days after treatment with oxalic acid. Immunoblot analysis of protein extracts from oxalic acid-treated plants demonstrated the induction of a 23 kDa thaumatin-like protein (TLP) cross-reacting with bean TLP antibody. These results suggest that the enhanced activities of defense enzymes and defense-related compounds in oxalic acid-treated rice plants may contribute to resistance against R. solani.  相似文献   

2.
3.
rhm1 is a major recessive disease resistance locus for Southern corn leaf blight (SCLB).To further narrow down its genetic position,F 2 population and BC 1 F 1 population derived from the cross between resistant (H95 rhm) and susceptible parents (H95) of maize (Zea mays) were constructed.Using newly developed markers,rhm1 was initially delimited within an interval of 2.5 Mb,and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149-1.Three polymorphic markers IDP961-504,IDP B2-3 and A194149-2 were shown to be co-segregated with the rhm1 locus.Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1).Comparative sequence analysis indicated that the LHT1 in H95 rhm harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73,H95 and Mo17.The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95 rhm).Our results strongly suggest LHT1 as the candidate gene for rhm1 against SCLB.The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.  相似文献   

4.
5.
6.
7.
Multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette superfamily. Using the energy provided by ATP hydrolysis, it transports a broad spectrum of substrates across the plasma membrane, including hormones, leukotriene C(4), bile salts, and anti-cancer drugs. Recent works have suggested that P-glycoprotein is associated to cholesterol and sphingolipid-rich membrane microdomains and that cholesterol upregulates its ATPase and drug transport activities. Confocal microscopy experiments and Triton X-100 extraction of detergent-resistant membranes provide evidence that MRP1 is not located in raft-like structures and that its activity is downregulated by cholesterol. The data are discussed in terms of cholesterol-protein interaction and topology.  相似文献   

8.
Lipoprotein subfractions help discriminate cardiometabolic disease risk. Genetic loci validated as associating with lipoprotein measures do not account for a large proportion of the individual variation in lipoprotein measures. We hypothesized that DNA methylation levels across the genome contribute to interindividual variation in lipoprotein measures. Using data from participants of the Genetics of Lipid Lowering Drugs and Diet Network (n = 663 for discovery and n = 331 for replication stages, respectively), we conducted the first systematic screen of the genome to determine associations between methylation status at ∼470,000 cytosine-guanine dinucleotide (CpG) sites in CD4+ T cells and 14 lipoprotein subfraction measures. We modeled associations between methylation at each CpG site and each lipoprotein measure separately using linear mixed models, adjusted for age, sex, study site, cell purity, and family structure. We identified two CpGs, both in the carnitine palmitoyltransferase-1A (CPT1A) gene, which reached significant levels of association with VLDL and LDL subfraction parameters in both discovery and replication phases (P < 1.1 × 10−7 in the discovery phase, P < .004 in the replication phase, and P < 1.1 × 10−12 in the full sample). CPT1A is regulated by PPARα, a ligand for drugs used to reduce CVD. Our associations between methylation in CPT1A and lipoprotein measures highlight the epigenetic role of this gene in metabolic dysfunction.  相似文献   

9.
Plants defend themselves against potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs). However, the molecular mechanisms underlying this PAMP-triggered immunity (PTI) are largely unknown. In this study, we show that tomato HP1/DDB1, coding for a key component of the CUL4-based ubiquitin E3 ligase complex, is required for resistance to Agrobacterium tumefaciens. We found that the DDB1-deficient mutant (high pigment-1, hp1) is susceptible to nontumorigenic A. tumefaciens. The efficiency of callus generation from the hp1 cotyledons was extremely low as a result of the necrosis caused by Agrobacterium infection. On infiltration of nontumorigenic A. tumefaciens into leaves, the hp1 mutant moderately supported Agrobacterium growth and developed disease symptoms, but the expression of the pathogenesis-related gene SlPR1a1 and several PTI marker genes was compromised at different levels. Moreover, exogenous application of salicylic acid (SA) triggered SlPR1a1 gene expression and enhanced resistance to A. tumefaciens in wild-type tomato plants, whereas these SA-regulated defence responses were abolished in hp1 mutant plants. Thus, HP1/DDB1 may function through interaction with the SA-regulated PTI pathway in resistance against Agrobacterium infection.  相似文献   

10.
Salicylic acid (SA) treatment triggers inhibition of replication or movement of several positive-sense RNA plant viruses in tobacco. This resistance can also be stimulated by nonlethal concentrations of cyanide and antimycin A (AA) without triggering induction of pathogenesis-related PR-1 protein genes. In two ecotypes of Arabidopsis thaliana (Columbia and N?ssen), SA-induced resistance to a tobamovirus, Turnip vein clearing virus (TVCV), was also induced by nonlethal concentrations of cyanide and AA without concomitant induction of PR-1 gene expression. Furthermore, chemically induced resistance to TVCV, as well as the induction of the plant mitochondrial alternative oxidase (a potential target for the chemicals), was independent of NPR1, a gene that plays a key role downstream of SA in the induction of PR proteins. The chemically induced resistance to TVCV appeared to be due to inhibition of replication at the site of inoculation. Taken together, these results show that in Arabidopsis, as in tobacco, resistance to viruses can be induced via a distinct branch of the defensive signal transduction pathway. This suggests that the existence of this virus-specific branch may be widespread among plants.  相似文献   

11.
Augmented glucose-stimulated insulin secretion (GSIS) is an adaptive mechanism exhibited by pancreatic islets from insulin-resistant animal models. Gap junction proteins have been proposed to contribute to islet function. As such, we investigated the expression of connexin 36 (Cx36), connexin 43 (Cx43), and the glucose transporter Glut2 at mRNA and protein levels in pancreatic islets of dexamethasone (DEX)-induced insulin-resistant rats. Study rats received daily injections of DEX (1 mg/kg body mass, i.p.) for 5 days, whereas control rats (CTL) received saline solution. DEX rats exhibited peripheral insulin resistance, as indicated by the significant postabsorptive insulin levels and by the constant rate for glucose disappearance (KITT). GSIS was significantly higher in DEX islets (1.8-fold in 16.7 mmol/L glucose vs. CTL, p < 0.05). A significant increase of 2.25-fold in islet area was observed in DEX vs. CTL islets (p < 0.05). Cx36 mRNA expression was significantly augmented, Cx43 diminished, and Glut2 mRNA was unaltered in islets of DEX vs. CTL (p < 0.05). Cx36 protein expression was 1.6-fold higher than that of CTL islets (p < 0.05). Glut2 protein expression was unaltered and Cx43 was not detected at the protein level. We conclude that DEX-induced insulin resistance is accompanied by increased GSIS and this may be associated with increase of Cx36 protein expression.  相似文献   

12.
ATP -competitive mTO R kinase inhibitors (mTorKIs) are a new generation of mTO R-targeted agents with more potent anticancer activity than rapamycin in several tumor models. However, the sensitivity and resistance of cancer cells to mTorKIs remain poorly understood. In this study, we tested mTorKIs against a large panel of colorectal cancer (CRC) cell lines, and found that mTorKIs displayed broader anti-CRC activity than rapamycin, including CRC cells with K-Ras or B-Raf mutations, suggesting that these mTorKIs are particularly useful for CRCs resistant to EGFR inhibitors. Unexpectedly, we found that 40% CRC cell lines were intrinsically drug resistant. Moreover, we discovered an mTO R-independent 4E? BP1 phosphorylation that was correlated with mTorKI resistance. Altogether, our findings provide compelling preclinical support for testing mTorKIs in human CRC clinical trials. They further reveal the existence of significant intrinsic mTorKI drug resistance in cancer cells and suggest that 4E-BP1 phosphorylation is a predictive biomarker for mTorKI sensitivity and resistance.  相似文献   

13.
ATP-competitive mTOR kinase inhibitors (mTorKIs) are a new generation of mTOR-targeted agents with more potent anticancer activity than rapamycin in several tumor models. However, the sensitivity and resistance of cancer cells to mTorKIs remain poorly understood. In this study, we tested mTorKIs against a large panel of colorectal cancer (CRC) cell lines, and found that mTorKIs displayed broader anti-CRC activity than rapamycin, including CRC cells with K-Ras or B-Raf mutations, suggesting that these mTorKIs are particularly useful for CRCs resistant to EGFR inhibitors. Unexpectedly, we found that 40% CRC cell lines were intrinsically drug resistant. Moreover, we discovered an mTOR-independent 4E-BP1 phosphorylation that was correlated with mTorKI resistance. Altogether, our findings provide compelling preclinical support for testing mTorKIs in human CRC clinical trials. They further reveal the existence of significant intrinsic mTorKI drug resistance in cancer cells and suggest that 4E-BP1 phosphorylation is a predictive biomarker for mTorKI sensitivity and resistance.Key words: mTOR, kinase, colorectal cancer, drug resistance, 4E-BP1, phosphorylation  相似文献   

14.
15.
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.  相似文献   

16.
An acidic, low molecular weight protein called TA1-18 (T for Triticum. Al for aluminium and 18 for its approximate molecular weight) is induced in wheat roots that are exposed to growth-inhibiting concentrations of Al. Enhanced biosynthesis of TA1-18 began during the period 3 to 6 h after exposure to Al, and reached a maximum after 9 to 12 h of treatment. A protein with the same molecular weight and pl was also elicited during toxicity associated with Cu and Cd, with calcium deprivation, and low (3. 5) pH, but not by heat shock. TA1-18 was formed in small amounts in triticale, but was not detected in rye during exposure to growth-inhibiting levels of Al. Amino acid sequencing of trypsin fragments of TA1-18 revealed strong homology to pathogenesis-related protein PR2 from parsley cultures, with which TA1-18 also shares similar molecular weight and pl. Aluminium toxicity appears to have features in common with pathogenesis such that similar proteins are formed in response to both types of stress.  相似文献   

17.
18.
The proteins that interact with cytoplasmic and nuclear polyadenylated RNA in adenovirus type 5 (Ad5) infection of HeLa cells were examined by UV-induced RNA-protein cross-linking in intact cells. The Ad5 100-kilodalton late nonvirion protein (100K protein) was cross-linked to both host and viral polyadenylated cytoplasmic RNA (mRNA). The cross-linking of the 100K protein to mRNA appears to correlate with productive infection, because the protein is not cross-linked to mRNA in abortive infection of wild-type Ad5 in monkey cells (CV-1) even though normal amounts of it are produced. However, when CV-1 cells are infected with Ad5 hr404, and Ad5 mutant which overcomes the host restriction to wild-type Ad5 infection in these cells, the 100K protein is cross-linked to mRNA. To identify and obtain antibodies to RNA-contacting proteins, a mouse was immunized with oligo(dT)-selected cross-linked RNA-protein complexes from Ad5-infected cells and the serum was used for immunoblotting experiments. It was found that in addition to the 100K protein, the Ad5 72K DNA-binding protein is also associated with RNA in the infected cells. The 72K DNA-binding protein is cross-linked to polyadenylated nuclear RNA sequences. These findings indicate that adenovirus proteins interact with RNAs in the infected cell and suggest possible mechanisms for the effects of the virus on mRNA metabolism.  相似文献   

19.
D Smith 《Cryobiology》1968,5(3):148-159
  相似文献   

20.
In tobacco (Nicotiana tabacum L. cv. Xanthinc), salicylic acid (SA) levels increase in leaves inoculated by necrotizing pathogens and in healthy leaves located above the inoculated site. Systemic SA increase may trigger disease resistance and synthesis of pathogenesis-related proteins (PR proteins). Here we report that ultraviolet (UV)-C light or ozone induced biochemical responses similar to those induced by necrotizing pathogens. Exposure of leaves to UV-C light or ozone resulted in a transient ninefold increase in SA compared to controls. In addition, in UV-light-irradiated plants, SA increased nearly fourfold to 0.77 g·g–1 fresh weight in leaves that were shielded from UV light. Increased SA levels were accompanied by accumulation of an SA conjugate and by an increase in the activity of benzoic acid 2-hydroxylase which catalyzes SA biosynthesis. In irradiated and in unirradiated leaves of plants treated with UV light, as well as in plants fumigated with ozone, PR proteins 1a and 1b accumulated. This was paralleled by the appearance of induced resistance to a subsequent challenge with tobacco mosaic virus. The results suggest that UV light, ozone fumigation and tobacco mosaic virus can activate a common signal-transduction pathway that leads to SA and PR-protein accumulation and increased disease resistance.Abbreviations PR protein pathogenesis-related protein - SA salicylic acid - TMV tobacco mosaic virus - UV ultraviolet This work was financed by grants from the U.S. Department of Agriculture (Competitive Research Grants Office), Division of Energy Biosciences of U.S. Department of Energy, the Rockefeller Foundation, the New Jersey Commission for Science and Technology, and the New Jersey Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号