首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Gal1-3GalNAc-R(GlcNAc to GalNAc) 6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 6-GlcNAc-T) and CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase (EC 2.4.99.4; 3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 6-GlcNAc-T activity; core 2 6-GlcNAc-T from mucin secreting tissue (named core 2 6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAc1-6(GlcNAc1-3)GalNAc-R] and blood group I [GlcNAc1-6(GlcNAc1-3)Gal-R] branches; core 2 6-GlcNAc-T in leukemic cells (named core 2 -GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Gal1-3GalNAc-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. 3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Gal1-3GalNAc-Bn. Gal1-3(6-deoxy)GalNAc-Bn and 3-deoxy-Gal1-3GalNAc-Bn competitively inhibited core 2 6-GlcNAc-T and 3-sialyltransferase activities, respectively.Abbreviations AFGP antifreeze glycoprotein - AML acute myeloid leukemia - Bn benzyl - CML chronic myelogenous leukemia - Fuc l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - GlcNAc, Gn N-acetyl-d-glucosamine - HC human colonic homogenate - HO hen oviduct microsomes - HPLC high performance liquid chromatography - mco 8-methoxycarbonyl-octy - Me methyl - MES 2-(N-morpholino)ethanesulfonate - MK mouse kidney homogenate - onp o-nitrophenyl - PG pig gastric mucosal microsomes - pnp p-nitrophenyl - RC rat colonic mucosal microsomes - SA sialic acid - T transferase Enzymes: UDP-GlcNAc:Gal1-3GalNAc-R (GlcNAc to GalNAc) 6-N-acetylglucosaminyltransferase,O-glycan core 2 6-GlcNAc-transferase, EC 2.4.1.102; CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase,O-glycan 3-sialic acid-transferase, EC 2.4.99.4.  相似文献   

2.
A new approach for the highly specific preparation of L-serine conjugates of lactosamine and Gal1-3GalNAc is described. Thus, the L-serine derivative of lactosamine Gal1-4GlcNAc-O-(N-Z)-Ser-OEt, was obtained from lactose, employing GlcNAc-O-(N-Z)-Ser-OEt as acceptor and a yeast -galactosidase as catalyst Galp 1-3GalNAc-O-(N-Alloc)-Ser-OMe was obtained from lactose, employing GalNAc-O-(N-Alloc)-Ser-OMe as acceptor and -galactosidase from bovine testes as catalyst.  相似文献   

3.
Synthesis and clusterization of Galβ(1→3)[NeuAcα(2→6)]GlcNAcβ(1→2)Man motif of the N-glycan, as the molecular probes for their biological evaluation, are reported. Key step is the quantitative and the completely α-selective sialylation of the C5-azide N-phenyltrifluoroacetimidate with the disaccharide acceptor, Galβ(1→3)GlcNTroc. Clusterization of the 16 molecules of trisaccharide motif was also achieved by the ‘self-activating click reaction’. These probes could efficiently be labeled by biotin and/or other fluorescence- or radioactive reporter groups through either cross metathesis, acylation, Cu(I)-mediated Huisgen [2+3]-cycloaddition, or the azaelectrocyclization to utilize the various biological techniques.  相似文献   

4.
Radiolabelled GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (1), GlcNAc beta 1-3)GlcNAc beta 1-6)Gal beta 1-OCH3 (4), GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (7), and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (10) were cleaved partially with jack bean beta-N-acetylhexosaminidase (EC 3.2.1.30), and the digests were analysed chromatographically. All four oligosaccharides were hydrolysed faster at the (1-6) branch, than at the (1-3) branch, but a high branch specificity was observed only with the glycan 4. The saccharides 1 and 7 resembled each other in the kinetics of the enzyme-catalysed release of their two non-reducing N-acetylglucosamine units, but the glycan 10 was rather different. The partial digestions made it possible to obtain radiolabelled GlcNAc beta 1-6Gal, GlcNAc beta 1-6Gal beta 1-OCH3, GlcNAc beta 1-6Gal beta 1-4Glc, and, in particular, GlcNAc beta 1-6Gal beta 1-4GlcNAc.  相似文献   

5.
Gal1-3GlcNAc (1) and Gal1-3GlcNAc-SEt (2) were synthesized on a 100 mg scale by the transgalactosylation reaction of bovine testes -galactosidase with lactose as donor andN-acetylglucosamine and GlcNAc-SEt as acceptors. In both cases the product mixtures contained unwanted isomers and were treated with -galactosidase fromEscherichia coli which has a different specificity, under conditions favouring hydrolysis, yielding besides the desired products, monosaccharides and traces of trisaccharides. The products were purified to >95% by gel filtration, with a final yield of 12% of 1 and 17% of 2, based on added acceptor. In a separate experiment Gal1-6GlcNAc-SEt (3) was synthesized by the transglycosylation reaction using -galactosidase fromEscherichia coli. No other isomers were detected. Compound 3 was purified by HPLC.  相似文献   

6.
Russian Journal of Bioorganic Chemistry - In a cohort of 106 donors, we analyzed correlations in the binding of natural antibodies to human glycans in a composition of the glycan array. Along with...  相似文献   

7.
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes.  相似文献   

8.
Incubation of synthetic Man\1-4GlcNAc-OMe, GalNAc1-4GlcNAc-OMe, Glc1-4GlcNAc-OMe, and GlcNAc1-4GlcNac-OMe with CMP-Neu5Ac and rat liver Gal1-4GlcNAc (2-6)-sialyltransferase resulted in the formation of Neu5Ac2-6Man1-4GlcNAc-OMe, Neu5Ac2-6GalNAc1-4GlcNAc-OMe, Neu5Ac2-6Glc1-4GlcNAc-OMe and Neu5Ac2-6GlcNAc1-4GlcNAc-OMe, respectively. Under conditions which led to quantitative conversion of Gal1-4GlcNAc-OEt into Neu5Ac2-6Gal1-4GlcNAc-OEt, the aforementioned products were obtained in yields of 4%, 48%, 16% and 8%, respectively. HPLC on Partisil 10 SAX was used to isolate the various sialyltrisaccharides, and identification was carried out using 1- and 2-dimensional 500-MHz1H-NMR spectroscopy.Abbreviations 2D 2-dimensional - CMP cytidine 5-monophosphate - CMP-Neu5Ac cytidine 5-monophospho--N-acetylneuraminic acid - COSY correlation spectroscopy - DQF double quantum filtered - HOHAHA homonuclear Hartmann-Hahn - MLEV composite pulse devised by M. Levitt - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

9.
There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1–4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1–4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1–4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1–6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1–6 bond in LacNAcβ1–6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis.  相似文献   

10.
Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in 1–2 linkage to terminal Gal of type 3 (Gal1–3GalNAc) acceptors, and in 1–3 linkage to GlcNAc of type 2 (Gal1–4GlcNAc) acceptors. The 1–2 fucosyltransferase was active with Gal1–3GalNAc1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml–1) and Gal1–3GalNAc (K m=20 mM,V max=2.1 mU ml–1), whereas the 1–3 fucosyltransferase was active with Gal1–4GlcNAc (K m=23 mM,V max=1.1 mU ml–1). The products formed from Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fuc1–2Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4(Fuc1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.Abbreviations 2Fuc-T 1–2 fucosyltransferase - 3Fuc-T 1–3 fucosyltransferase - MeO-3Man 3-O-methyl-D-mannose - MeO-3Gal 3-O-methyl-D-galactose  相似文献   

11.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

12.
Carbohydrate structures between retinal neurons and retinal pigment epithelium (RPE) play an important role in maintaining the integrity of retinal adhesion to underlying RPE, and in retinal detachment pathogenesis. Since relevant knowledge is still in the primary stage, glycotopes on the adult retina of mongrel canines (dog), micropigs and Sprague-Dawley rats were examined by lectino-histochemistry, using a panel of 16 different lectins. Paraffin sections of eyes were stained with biotinylated lectins, and visualized by streptavidin-peroxidase and diaminobenzidine staining. Mapping the affinity profiles, it is concluded that: (i) all sections of the retina reacted well with Morniga M, suggesting that N-linked glycans are present in all layers of the retina; (ii) no detectable human blood group ABH active glycotopes were found among retinal layers; (iii) outer and inner segments contained glycoconjugates rich in ligands reacting with T α (Galβ1–3GalNAcα1-Ser/Thr) and Tn (GalNAcα1-Ser/Thr) specific lectins; (iv) cone cells of retina specifically bound peanut agglutinin (PNA), which recognizes T α residues and could be used as a specific marker for these photoreceptors; (v) the retinas of rat, dog and pig, had a similar binding profile but with different intensity; (vi) each retinal layer had its own binding characteristic. This information may provide useful background knowledge for normal retinal physiology and miscellaneous retinal diseases, including retinal detachment (RD) and age-related macular degeneration (ARMD).  相似文献   

13.
Three novel oligosaccharides of human infant faeces have been fully characterised by methylation analysis and 500/600 MHz 1H NMR spectroscopy including DQF-COSY, TQF-COSY, TOCSY and ROESY experiments. The oligosaccharides were shown to be lactose-based structures two of which were substituted at C-6 of Gal with either the Lex trisaccharide, Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1-, or Neu5Ac(α2–6)Gal(β1–4)GlcNAc-(β1-. They differ from other free oligosaccharides previously isolated from the human by having the (1 → 6) linkage to Gal in the absence of a (1 → 3) branch. The third oligosaccharide has Neu5Ac(α2–6) linked to GlcNAc of the trisaccharide GlcNAc(β1–3)Gal(β1–4)Glc. This is a linear fragment of the disialylated tetrasaccharide sequence Neu5Ac(α2–3)Gal(β1–3)[Neu5Ac(α2–6)]GlcNAc(β1- found in the milk oligosaccharide disialyl LNT (the GlcNAc residue of the tetrasaccharide linked to lactose) and also of N-linked chains (GlcNAc linked to Man).  相似文献   

14.
Summary The Datura stramonium lectin recognizes with high affinity the disaccharide N-acetyllactosamine (Gal 1,4 GlcNAc). We have developed a highly specific cytochemical affinity technique in which an ovomucoid-gold complex serves as second step reagent for the visualization of this lectin bound to reactive sequences present in tissue sections. The lectin binding sites were detected in semithin and ultrathin sections of aldehyde-fixed and low temperature Lowicryl K4M embedded tissues. For light microscopical labeling the photochemical silver reaction for signal amplification was required. The application of this technique for the detection of N-acetyllactosamine containing asparagine-linked oligosaccharides in various intracellular organelles and the plasma membrane is demonstrated.This study was supported by the Swiss National Science Foundation grant nr. 31-26273.89 (to J.R.) and GM 29470 from the National Institutes of Health (to I.J.G.). Dr. G. Egea was a recipient of a European Molecular Biology Organization long term fellowship.  相似文献   

15.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   

16.
17.
A novel linear tetrasaccharide, Gal1-4GlcNAc1-6Gal1-4GlcNAc, was isolated from partial acid hydrolysates of metabolically labeled poly-N-acetyllactosaminoglycans of murine teratocarcinoma cells. It was characterized by exo-glycosidase sequencing and by mild acid hydrolysis followed by identification of all partial cleavage products. The tetrasaccharide, and likewise labelled GlcNAc1-6Gal1-4GlcNAc, resisted the action of endo--galactosidase (EC 3.2.1.103) fromE. freundii at a concentration of 125 mU/ml, while the isomeric, radioactive teratocarcinoma saccharides Gal1-4GlcNAc1-3Gal1-4GlcNAc and GlcNAc1-3Gal1-4GlcNAc were cleaved in the expected manner.Abbreviations WGA wheat germ agglutinin - BSA bovine serum albumin - [3H]GlcNAc1-4-GlcNAc1-4GlcNAcOL N,N,NN'-triacetylchitotriose reduced with NaB3H4  相似文献   

18.
A glycosidase from Aspergillus oryzae catalysed the stereospecific formation of various derivatives of the Tn antigen, D-GalNAca1O-L-Ser, employing D-GalNAc-OPhNO - p as glycosyl donor and different N- and C-protected L-Ser derivatives as acceptors. The same glycosidase preparation was also useful for stereospecific preparation of D-GalNAca1O-L-Thr and D-GlcNAc1O-L-Ser derivatives. Yields were in the range 10-50% depending on the type of acceptor. Lipase from porcine pancreas was used for specific hydrolysis, generating a Tn antigen derivative with a free carboxyl group. This facilitates the use of the derivatives in e.g. solid phase synthesis of glycopeptides.  相似文献   

19.
Xylans from five seaweeds belonging to the order Nemaliales (Galaxaura marginata, Galaxaura obtusata, Tricleocarpacylindrica, Tricleocarpa fragilis, and Scinaia halliae) and one of the order Palmariales (Palmaria palmata) collected on the Brazilian coasts were extracted with hot water and purified from acid xylomannans and/or xylogalactans through Cetavlon precipitation of the acid polysaccharides. The β-D-(1→4), β-D-(1→3) 'mixed linkage' structures were determined using methylation analysis and 1D and 2D NMR spectroscopy. The presence of large sequences of β-(1→4)-linked units suggests transient aggregates of ribbon- or helical-ordered structures that would explain the low optical rotations.  相似文献   

20.
UDP-GlcNAc:GlcNAc 1-2Man1-6R (GlcNAc to Man) 1,6-N-acetylglucosaminyltransferase V (GlcNAc-T V) adds a GlcNAc1-6 branch to bi- and triantennaryN-glycans. An increase in this activity has been associated with cellular transformation, metastasis and differentiation. We have used synthetic substrate analogues to study the substrate specificity and inhibition of the partially purified enzyme from hamster kidney and of extracts from hen oviduct membranes and acute myeloid leukaemia leukocytes. All compounds with the minimum structure GlcNAc1-2Man1-6Glc/Man-R were good substrates for GlcNAc-T V. The presence of structural elements other than the minimum trisaccharide structure affected GlcNAc-T V activity without being an absolute requirement for activity. Substrates with a biantennary structure were preferred over linear fragments of biantennary structures. Kinetic analysis showed that the 3-hydroxyl of the Man1-3 residue and the 4-hydroxyl of the Man- residue of the Man1-6(Man1-3)Man-RN-glycan core are not essential for catalysis but influence substrate binding. GlcNAc1-2(4,6-di-O-methyl-)Man1-6Glc-pnp was found to be an inhibitor of GlcNAc-T V from hamster kidney, hen oviduct microsomes and acute and chronic myeloid leukaemia leukocytes.Abbreviations all allyl - AML acute myeloid leukaemia - BSA bovine serum albumin - CML chronic myelogenous leukaemia - Gal G,d-galactose - Glc d-glucose - GlcNAc Gn,N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man M,d-mannose - mco 8-methoxycarbonyl-octyl, (CH2)8COOCH3 - Me methyl - MES 2-(N-morpholino)ethanesulfonate - oct octyl - pnp p-nitrophenyl - T transferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号