首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research over the past few years has led to dramatic new discoveries on the role of double-stranded RNA (dsRNA) in the cell. RNA duplexes have been shown to orchestrate epigenetic changes, repress translation, and direct mRNA degradation in a sequence-specific manner. These diverse effects of dsRNA on gene expression have been termed RNA interference (RNAi). In addition to playing a role in viral defense and silencing transposons, RNAi also has a critical function in a number of developmental processes in the embryo. In this review, we explore these roles and discuss the molecular mechanisms behind dsRNA-mediated gene silencing. Further, we address the use of RNAi as a tool to study gene function in biology, and as a strategy for treating human disease.  相似文献   

2.
RNA干扰(RNAi)广泛存在于各种生物体中,是参与细胞防御与分化调控的重要机制之一。RNAi的作用由双链RNA启动,通过在转录、转录后和翻译等多个水平上对同源基因表达的特异阻断和抑制来实现,清晰地阐明其作用机制将为功能基因组学、发育生物学,以及抗肿瘤、抗病毒的新策略研究提供重要的理论依据。本文综述了近年来有关RNAi机制的研究进展。  相似文献   

3.
RNA interference (RNAi) is a powerful approach to phenocopy mutations in many organisms. Gold standard conventional knock‐out mouse technology is labor‐ and time‐intensive; however, off‐target effects may confound transgenic RNAi approaches. Here, we describe a rapid method for conditional and reversible gene silencing in RNAi transgenic mouse models and embryonic stem (ES) cells. RUSH and CRUSH RNAi vectors were designed for reversible or conditional knockdown, respectively, demonstrated using targeted replacement in an engineered ROSA26lacZ ES cell line and wildtype V6.5 ES cells. RUSH was validated by reversible knockdown of Dnmt1 in vitro. Conditional mouse model production using CRUSH was expedited by deriving ES cell lines from Cre transgenic mouse strains (nestin, cTnnT, and Isl1) and generating all‐ES G0 transgenic founders by tetraploid complementation. A control CRUSHGFP RNAi mouse strain showed quantitative knockdown of GFP fluorescence as observed in compound CRUSHGFP, Ds‐Red Cre‐reporter transgenic mice, and confirmed by Western blotting. The capability to turn RUSH and CRUSH alleles off or on using Cre recombinase enables this method to rapidly address questions of tissue‐specificity and cell autonomy of gene function in development. genesis 52:39–48, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.  相似文献   

5.
Inducible systemic RNA silencing in Caenorhabditis elegans   总被引:8,自引:0,他引:8       下载免费PDF全文
Introduction of double-stranded RNA (dsRNA) can elicit a gene-specific RNA interference response in a variety of organisms and cell types. In many cases, this response has a systemic character in that silencing of gene expression is observed in cells distal from the site of dsRNA delivery. The molecular mechanisms underlying the mobile nature of RNA silencing are unknown. For example, although cellular entry of dsRNA is possible, cellular exit of dsRNA from normal animal cells has not been directly observed. We provide evidence that transgenic strains of Caenorhabditis elegans transcribing dsRNA from a tissue-specific promoter do not exhibit comprehensive systemic RNA interference phenotypes. In these same animals, modifications of environmental conditions can result in more robust systemic RNA silencing. Additionally, we find that genetic mutations can influence the systemic character of RNA silencing in C. elegans and can separate mechanisms underlying systemic RNA silencing into tissue-specific components. These data suggest that trafficking of RNA silencing signals in C. elegans is regulated by specific physiological and genetic factors.  相似文献   

6.
H1启动子siRNA载体的构建及应用   总被引:1,自引:0,他引:1  
利用双链RNA(dsRNA)调控基因表达已经成为研究基因功能的有力工具。用人H1启动子构建了pBS/H1PS小干扰RNA(siRNA)表达载体,用于在哺乳动物细胞中产生特异性dsRNA转录产物。通过对293细胞中的PSMA7分子进行表达抑制,证明该siRNA载体能够有效产生针对靶基因的RNA干扰(RNAi)效应。  相似文献   

7.
Heritable gene silencing in Drosophila using double-stranded RNA   总被引:50,自引:0,他引:50  
RNA-mediated interference (RNAi) is a recently discovered method to determine gene function in a number of organisms, including plants, nematodes, Drosophila, zebrafish, and mice. Injection of double-stranded RNA (dsRNA) corresponding to a single gene into organisms silences expression of the specific gene. Rapid degradation of mRNA in affected cells blocks gene expression. Despite the promise of RNAi as a tool for functional genomics, injection of dsRNA interferes with gene expression transiently and is not stably inherited. Consequently, use of RNAi to study gene function in the late stages of development has been limited. It is particularly problematic for development of disease models that reply on post-natal individuals. To circumvent this problem in Drosophila, we have developed a method to express dsRNA as an extended hairpin-loop RNA. This method has recently been successful in generating RNAi in the nematode Caenorhabditis elegans. The hairpin RNA is expressed from a transgene exhibiting dyad symmetry in a controlled temporal and spatial pattern. We report that the stably inherited transgene confers specific interference of gene expression in embryos, and tissues that give rise to adult structures such as the wings, legs, eyes, and brain. Thus, RNAi can be adapted to study late-acting gene function in Drosophila. The success of this approach in Drosophila and C. elegans suggests that a similar approach may prove useful to study gene function in higher organisms for which transgenic technology is available.  相似文献   

8.
9.
RNA interference in crop plants   总被引:13,自引:0,他引:13  
  相似文献   

10.
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.  相似文献   

11.
Silencing of developmental genes in Hydra.   总被引:32,自引:0,他引:32  
  相似文献   

12.
Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes.  相似文献   

13.
The molecular mechanisms that time development are now being deciphered in various organisms, particularly in Caenorhabditis elegans. Key recent findings indicate that certain C. elegans timekeeping genes are conserved across phyla, and their developmental expression patterns indicate that a timing function might also be conserved. Small regulatory RNAs have crucial roles in the timing mechanism, and the cellular machinery required for production of these RNAs intersects with that used to process double-stranded RNAs during RNA interference.  相似文献   

14.
Siomi MC  Saito K  Siomi H 《FEBS letters》2008,582(17):2473-2478
Transposable elements (TEs) are DNA elements found in the genomes of various organisms. TEs have been highly conserved during evolution, suggesting that they confer advantageous effects to their hosts. However, due to their ability to transpose into virtually any locus, TEs have the ability to generate deleterious mutations in the host genome. In response, a variety of different mechanisms have evolved to mitigate their activities. A main defense mechanism is RNA silencing, which is a gene silencing mechanism triggered by small RNAs. In this review, we address RNA silencing mechanisms that silence retrotransposons, a subset of TEs, and discuss how germline and somatic cells are equipped with different retrotransposon silencing mechanisms.  相似文献   

15.
The RNA interference technique is a powerful tool to understand gene function. Intriguingly, RNA interference cannot only be used for cells in vitro, but also in living organisms. Here, we have adapted the method for use in the chick embryo. However, this technique is limited by the uncertainty in predicting the RNAi transfection efficiency and site in the embryo. Hence, we elaborated a modified vector system, pEGFP-shRNA, which can coexpress enhanced green fluorescent protein (EGFP) and short hairpin RNA (shRNA) simultaneously to facilitate analysis of gene silencing in chicken embryos. We tested the silencing of two highly conserved genes (cAxin2, cParaxis), which play crucial roles in chicken embryonic developmental processes. For each target gene, four to five small DNA inserts, each of them encoding one shRNA, were selected and cloned individually to the vector downstream of the Pol III promoter (either human H1 or U6 promoter), which shared with highly conserved motifs in human and chicken. The pEGFP-shRNA constructs were electroporated into the neural tube or somites. After subsequent re-incubation of 24 h, the EGFP expression, with green fluorescent signal, indicated the transfected regions in the neural tube or somites. The EGFP expressing embryos were further submitted into the process of in situ hybridization for examination of the silencing effects. The results show that the EGFP signal in transfected areas correlated with the silencing of the target genes (cAxin2, cParaxis). The cAxin2 expression was inhibited by shRNAs of either targeting the RGS domain or the DAX domain coding region. The cParaxis mRNA level in transgenic somites and the related migratory myogenic population was also reduced. The results suggest that our novel dual expression EGFP-shRNA system opens a new possibility to study gene function in a convenient and efficient way.  相似文献   

16.
17.
18.
19.
The wasp Nasonia vitripennis is emerging as a useful model organism in which to address a variety of biological questions, due, in part, to its ease of laboratory use, unique aspects of its biology and the sequencing of its genome. In order to take full advantage of the potential of this organism, methods for manipulating gene function are needed. To this end, a protocol for parental RNA interference (pRNAi) in N. vitripennis is described. pRNAi entails injecting pupae with double-stranded RNA, allowing the injected wasps to eclose and examining the progeny for developmental defects. This basic protocol is described in the context of the life cycle of N. vitripennis. This technique has been useful in elucidating the function of most, although not all, genes tested to date, and has potential applications beyond embryonic patterning. pRNAi experiments in Nasonia can be completed in as little as 2 weeks.  相似文献   

20.
Qadota H  Inoue M  Hikita T  Köppen M  Hardin JD  Amano M  Moerman DG  Kaibuchi K 《Gene》2007,400(1-2):166-173
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号