首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
蓖麻毒素A链突变体(MRTA)的分子设计   总被引:4,自引:0,他引:4  
利用同源模建的方法,借助分子力学优化、分子动力学模拟退火设计构建了删除部分氨基酸序列的蓖麻毒素A链突变体(MRTA)。采用泊松—玻尔兹曼方程对比分析了蓖麻毒素A链(RTA)与MRTA表观静电势分布,研究RTA与MRTA蛋白表面静电性质;通过半经验量子化学AM1与分子力学结合方法探讨RTA与MRTA功能域氨基酸前线分子轨道性质、能级分布,从理论上预测MRTA功能活性  相似文献   

2.
Cibacron Blue亲和层析及应用   总被引:1,自引:0,他引:1  
以F3GA(Cibacron BlueF3GA)为配基建立了一种可用于免疫毒素(IT)分离纯化的亲和层析方法,实验中用三种不同来源的核糖体灭活蛋白(RIP),即蓖麻毒素A链(RTA),苦撤毒素(Momordin,MT)和Saporin,以探讨RIP与F3GA的相互作用。分析三种RIP均能引起F3GA吸收光谱明显红移,提示RIP均可与F3GA发生特异结合,将F3GA与Sephadex交联可获得Blu  相似文献   

3.
蓖麻毒素A链(RTA)有抑制蛋白质合成的功能,可用作“生物导弹”的弹头,但其免疫原性较强。我们根据国外所做的RTA连续突变的实验结果,以及PDB库中RTA及其同源蛋白的结构信息,设计了一个RTA突变体,缺失的5个片段与功能及结构保守性关系较小。然后,我们用同源模建的方法对设计出的RTA突变体进行三维结构模建,初步验证表明模型基本合理  相似文献   

4.
蓖麻毒素A链突变体的设计和结构模建   总被引:1,自引:0,他引:1  
蓖麻毒素A链(RTA)有抑制蛋白质合成的功能,可用作“生物导弹”的弹头,但其免疫原性较强。我们根据国外所做的RTA连续突变的实验结果,以及PDB库中RTA及其同源蛋白的结构信息,设计了一个RTA突变体,缺失的5个片段与功能及结构保守性关系较小。然后,我们用同源模建的方法对设计出的RTA突变体进行三维结构模建,初步验证表明模型基本合理  相似文献   

5.
以F3GA(Cibacron Blue F3GA)为配基建立了一种可用于免疫毒素(IT)分离纯化的亲和层析方法。实验中用三种不同来源的核糖体灭活蛋白(RIP),即蓖麻毒素A链(RTA),苦瓜毒素(momordin,MT)和Saporin,以探讨RIP与F3GA的相互作用。分析显示三种RIP均能引起F3GA吸收光诸明显红移,提示RIP均可与F3GA发生特异结合。将F3GA与Sephadex交联可获得Bluedex。Bluedex亲和层析是一种经济有效,简单易行,便于在各类实验室中使用的蛋白质亲和层析技术。结果表明:在低盐溶液中RTA和MT均可迅速地与Bluedex结合,而在高盐溶液中(0.65mol/LNaCl)又极易被洗脱回收。这一技术用于免疫毒素的研究可有效地去除游离抗体,而不影响其杀伤活性。  相似文献   

6.
采用pExSecⅠ载体系统进行了蓖麻毒素A链的原核表达,经CM-Sepharose一步纯化后,获得了纯度约80%的重组蓖麻毒素A链.将其与几种天然单链核糖体失活蛋白进行了超螺旋DNA裂解研究和无细胞体系中蛋白合成抑制试验,结果表明,重组蓖麻毒素A链具有类似于天然单链核糖体失活蛋白的活性,但两种测活方法之间没有明显的相关性  相似文献   

7.
苦荞麦营养器官的解剖学研究慕勤国(长庆油田第二中学,甘肃省庆阳地区马岭745113)关键词苦荞麦,营养器官,解剖ANATOMICALSTUDIESONTHEVEGETATIVEORGANSOFFAGOPYRUMTATARICUM¥MuQinguo(T...  相似文献   

8.
蓖麻毒素A链突变体的设计,表达与活性研究   总被引:1,自引:0,他引:1  
利用蛋白质结构同源模建并结合表观静电势分析,设计了拟具有生物学活性的蓖麻毒素A链的突变体。将PCR扩增的突变体基因,导入pKK223-3载体中,于大肠杆菌(E.coli)中获得高效、可溶性表达,而且,确证了表达产物具有预期的生物学活性。  相似文献   

9.
首届周尧昆虫分类学奖励基金隆重颁奖首届周尧昆虫分类学奖励基金隆重颁奖CHOUIOREWARDFORENTOMOLOGICALTAXONOMISTAWARDEDFORTHEFIRSTTIMEINTHE6THNATIONALENTOMOLOGYMEETI...  相似文献   

10.
蓖麻毒素A链的基因克隆   总被引:1,自引:0,他引:1  
作为导向药物蓖麻毒素A链在大肠杆菌中表达时不含糖基侧链,在体内半衰期长,可提高共作为导向药物的疗效。我们根据Ricin基因核苷酸序列,设计Ricin-A的上,下游引物,通过PCR(多聚酶链式反应)方法,扩增出Ricin-A链基因。与pUC19载体连接,转化到JM103大肠杆菌中,得到重组克隆。对其进行几种酶切鉴定,证明酶切位点正确,又经序列分析,读出与文献发表的Ricin-A序列只有两个碱基不同,  相似文献   

11.
Ricin is a potent plant cytotoxin composed of an A-chain [RTA (ricin A-chain)] connected by a disulfide bond to a cell binding lectin B-chain [RTB (ricin B-chain)]. After endocytic uptake, the toxin is transported retrogradely to the ER (endoplasmic reticulum) from where enzymatically active RTA is translocated to the cytosol. This transport is promoted by the EDEM1 (ER degradation-enhancing α-mannosidase I-like protein 1), which is also responsible for directing aberrant proteins for ERAD (ER-associated protein degradation). RTA contains a 12-residue hydrophobic C-terminal region that becomes exposed after reduction of ricin in the ER. This region, especially Pro250, plays a crucial role in ricin cytotoxicity. In the present study, we introduced a point mutation [P250A (substitution of Pro250 with alanine)] in the hydrophobic region of RTA to study the intracellular transport of the modified toxin. The introduced mutation alters the secondary structure of RTA into a more helical structure. Mutation P250A increases endosomal-lysosomal degradation of the toxin, as well as reducing its transport from the ER to the cytosol. Transport of modified RTA to the cytosol, in contrast to wild-type RTA, appears to be EDEM1-independent. Importantly, the interaction between EDEM1 and RTA(P250A) is reduced. This is the first reported evidence that EDEM1 protein recognition might be determined by the structure of the ERAD substrate.  相似文献   

12.
To analyze the influence of ricin B-chain on the toxicity of hybrid-protein conjugates, the rate of cellular uptake of conjugates, and the rate at which ricin A-chain (RTA) is delivered to the cytoplasm, we have constructed toxic hybrid proteins consisting of epidermal growth factor (EGF) coupled in disulfide linkage either to ricin or to RTA. EGF-ricin is no more toxic on A431 cells than EGF-RTA. The two conjugates demonstrate similar kinetics of cellular uptake (defined as antibody irreversible toxicity). EGF-RTA and EGF-ricin, like ricin, required a 2-2 1/2 hour period at 37 degrees before the onset of protein synthesis inhibition occurred. Our results suggest that RTA determines the processes which carry it, either in conjugate or toxin, from the plasma membrane binding site to the cytoplasm following endocytosis, and the ricin B chain is not required for these processes.  相似文献   

13.

Background  

Ricin is a potent toxin and known bioterrorism threat with no available antidote. The ricin A-chain (RTA) acts enzymatically to cleave a specific adenine base from ribosomal RNA, thereby blocking translation. To understand better the relationship between ligand binding and RTA active site conformational change, we used a fragment-based approach to find a minimal set of bonding interactions able to induce rearrangements in critical side-chain positions.  相似文献   

14.
RTA1-33/44-198 is a catalytically inactive, single-domain derivative of the ricin toxin A-chain (RTA) engineered to serve as a stable protein scaffold for presentation of native immunogenic epitopes (Olson et al., Protein Eng Des Sel 2004;17:391-397). To improve the stability and solubility of RTA1-33/44-198 further, we have undertaken the design challenge of introducing a disulfide (SS) bond. Nine pairs of residues were selected for placement of the SS-bond based on molecular dynamics simulation studies of the modeled single-domain chain. Disulfide formation at either of two positions (R48C/T77C or V49C/E99C) involving a specific surface loop (44-55) increased the protein melting temperature by ~5°C compared with RTA1-33/44-198 and by ~13°C compared with RTA. Prolonged stability studies of the R48C/T77C variant (> 60 days at 37°C, pH 7.4) confirmed a > 40% reduction in self-aggregation compared with RTA1-33/44-198 lacking the SS-bond. The R48C/T77C variant retained affinity for anti-RTA antibodies capable of neutralizing ricin toxin, including a monoclonal that recognizes a human B-cell epitope. Introduction of either R48C/T77C or V49C/E99C promoted crystallization of RTA1-33/44-198, and the X-ray structures of the variants were solved to 2.3 A or 2.1 A resolution, respectively. The structures confirm formation of an intramolecular SS-bond, and reveal a single-domain fold that is significantly reduced in volume compared with RTA. Loop 44 to 55 is partly disordered as predicted by simulations, and is positioned to form self-self interactions between symmetry-related molecules. We discuss the importance of RTA loop 34 to 55 as a nucleus for unfolding and aggregation, and draw conclusions for ongoing structure-based minimalist design of RTA-based immunogens.  相似文献   

15.
The cytotoxin ricin disables translation by depurinating a conserved site in eukaryotic rRNA. In vitro selection has been used to generate RNA ligands (aptamers) specific for the catalytic ricin A-chain (RTA). The anti-RTA aptamers bear no resemblance to the normal RTA substrate, the sarcin-ricin loop (SRL), and were not depurinated by RTA. An initial 80-nucleotide RNA ligand was minimized to a 31-nucleotide aptamer that contained all sequences and structures necessary for interacting with RTA. This minimal RNA formed high affinity complexes with RTA (K(d) = 7.3 nM) which could compete directly with the SRL for binding to RTA. The aptamer inhibited RTA depurination of the SRL and could partially protect translation from RTA inhibition. The IC(50) of the aptamer for RTA in an in vitro translation assay is 100 nM, roughly 3 orders of magnitude lower than a small molecule inhibitor of ricin, pteroic acid, and 2 orders of magnitude lower than the best known RNA inhibitor. The novel anti-RTA aptamers may find application as diagnostic reagents for a potential biological warfare agent and hold promise as scaffolds for the development of strong ricin inhibitors.  相似文献   

16.
Ricin is a plant derived protein toxin produced by the castor bean plant (Ricinus communis). The Centers for Disease Control (CDC) classifies ricin as a Category B biological agent. Currently, there is neither an effective vaccine that can be used to protect against ricin exposure nor a therapeutic to reverse the effects once exposed. Here we quantitatively characterize interactions between catalytic ricin A-chain (RTA) and a viral genome-linked protein (VPg) from turnip mosaic virus (TuMV). VPg and its N-terminal truncated variant, VPg1–110, bind to RTA and abolish ricin's catalytic depurination of 28S rRNA in vitro and in a cell-free rabbit reticulocyte translational system. RTA and VPg bind in a 1 to 1 stoichiometric ratio, and their binding affinity increases ten-fold as temperature elevates (5 °C to 37 °C). RTA-VPg binary complex formation is enthalpically driven and favored by entropy, resulting in an overall favorable energy, ΔG = −136.8 kJ/mol. Molecular modeling supports our experimental observations and predicts a major contribution of electrostatic interactions, suggesting an allosteric mechanism of downregulation of RTA activity through conformational changes in RTA structure, and/or disruption of binding with the ribosomal stalk. Fluorescence anisotropy studies show that heat affects the rate constant and the activation energy for the RTA-VPg complex, Ea = −62.1 kJ/mol. The thermodynamic and kinetic findings presented here are an initial lead study with promising results and provides a rational approach for synthesis of therapeutic peptides that successfully eliminate toxicity of ricin, and other cytotoxic RIPs.  相似文献   

17.
The plant toxin ricin has proven valuable as a membrane marker in studies of endocytosis as well as studies of different intracellular transport steps. The toxin, which consists of two polypeptide chains, binds by one chain (the B-chain) to both glycolipids and glycoproteins with terminal galactose at the cell surface. The other chain (the A-chain) enters the cytosol and inhibits protein synthesis enzymatically. After binding the toxin is endocytosed by different mechanisms, and it is transported via endosomes to the Golgi apparatus and the endoplasmic reticulum before translocation of the A-chain to the cytosol. The different transport steps have been analyzed by studying trafficking of ricin as well as modified ricin molecules.  相似文献   

18.
Day PJ  Pinheiro TJ  Roberts LM  Lord JM 《Biochemistry》2002,41(8):2836-2843
Ricin is a heterodimeric protein toxin in which a catalytic polypeptide (the A-chain or RTA) is linked by a disulfide bond to a cell-binding polypeptide (the B-chain or RTB). During cell entry, ricin undergoes retrograde vesicular transport to reach the endoplasmic reticulum (ER) lumen, from where RTA translocates into the cytosol, probably by masquerading as a substrate for the ER-associated protein degradation (ERAD) pathway. In partitioning studies in Triton X-114 solution, RTA is predominantly found in the detergent phase, whereas ricin holotoxin, native RTB, and several single-chain ribosome-inactivating proteins (RIPs) are in the aqueous phase. Fluorescence spectroscopy and far-UV circular dichroism (CD) demonstrated significant structural changes in RTA as a result of its interaction with liposomes containing negatively charged phospholipid (POPG). These lipid-induced structural changes markedly increased the trypsin sensitivity of RTA and, on the basis of the protein fluorescence determinations, abolished its ability to bind to adenine, the product resulting from RTA-catalyzed depurination of 28S ribosomal RNA. RTA also released trapped calcein from POPG vesicles, indicating that it destabilized the lipid bilayer. We speculate that membrane-induced partial unfolding of RTA during cell entry may facilitate its recognition as an ERAD substrate.  相似文献   

19.
In a previous report (Endo, Y. and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130) it was shown that the RNA N-glycosidase activity of ricin A-chain was responsible for the ability of this protein to inactivate eukaryotic ribosomes. The objective of the present study was to determine whether a similar mechanism was used by a ribosome-inactivating protein from pearled barley (barley toxin). Rat liver ribosomes were incubated either with ricin A-chain or barley toxin, and the rRNA was extracted and treated with acidic aniline to hydrolyze phosphodiester bonds rendered susceptible by removal of a purine or pyrimidine base. Evaluation of the rRNA by polyacrylamide/agarose electrophoresis disclosed two 28 S rRNA-derived fragments which differed in size from those generated by untreated (control) ribosomes. Sequencing of the smaller of these fragments confirmed that - as is the case for ricin A-chain - the aniline-sensitive site in barley toxin-treated ribosomes was between A and G in 28 S rRNA. We conclude that barley toxin inactivates ribosomes via a mechanism identical to that of ricin A-chain: enzymatic hydrolysis of the N-glycosidic bond at A of 28 S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号