首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文用荧光光谱技术和付立叶变换红外光谱研究了PAMP和脂质体的相互作用。PAMP与带负电磷脂作用后,其内源性荧光光谱峰位兰移,其荧光强度更不易被碘离子猝灭,提示PAMP和脂作用后其发荧光的色氨酸可能由水相移至疏水相。我们用自旋标记磷脂的猝灭实验测量了PAMP的插膜深度。FTIR实验表明,PAMP和带负电磷脂双层作用后将诱导PAMP的结构改变。  相似文献   

2.
牛胰多肽与脂作用时插膜状态的研究   总被引:2,自引:0,他引:2  
利用单层膜和荧光技术,研究牛胰多肽(BPP)和磷脂单分子层及脂质体的相互作用。BPP与磷脂单分子层作用的动力学曲线以及临界插膜压表明它和磷脂,尤其是酸性磷脂有较强的相互作用;荧光研究表明,与脂作用后多肽内源性荧光光谱峰位蓝移,说明发荧光的酪氨酸残基存在由亲水环境向疏水环境的转变。荧光猝灭实验表明多肽与脂作用后,其内源性酪氨酸残基荧光更不容易被碘盐所猝灭,提示酪氨酸残基受到了脂双层的屏蔽作用;自旋标记磷脂的猝灭实验计算结果表明BPP插膜深度在磷脂头部与脂酰链交界处稍内侧  相似文献   

3.
用生物膜的拆离与重建方法将从牛脑皮层膜中纯化的激活型GTP结合蛋白(Gs)和腺苷酸环化酶(AC)在含有不同极性头部或不同脂肪酸侧链的磷脂组成的脂质体上重建形成脂酶体,测定脂酶体中AC的基础活力及Gs激活AC的活力。实验结果表明,磷脂影响AC的基础活力和Gs激活AC活力的顺序依次为:PE>PS>PC;含不同脂肪酸侧链的混合磷脂对Gs的激活活力的影响大于含单一脂肪酸侧链的纯磷脂,如PEDPPE,PSDPPS,PCDPPC。含不同脂肪酸侧链的磷脂影响Gs的活力的顺序为DLPC>DMPC>DPPC。用反映磷脂分子的堆积程度的荧光探剂MC540和脂双层的流动性变化的DPH以及专一性标记蛋白质巯基(-SH)基团的荧光探剂acrylodan的测定结果表明,不同磷脂影响Gs的活力的差异主要是由于脂质物理状态的不同所致。  相似文献   

4.
山莨菪碱诱导DPPG脂质体交插结构,其脂酰链末端插到对面分子层脂酰链第五个碳原子的位置,而生物膜中普遍存在的DPPC不能被山莨菪碱诱导形成交插相,但DPPG/DPPC混合物则能形成交插相,即伴随DPPG的交插,DPPC分子也发生交插。当DPPG/DPPC摩尔比为2:1或1:1时,其脂酰链末端插到对面分子层第八个碳原子的位置。当DPPG/DPPC摩尔比为1:2时,就不能发生交插而呈完全的非交插状态。同时,发现当体系中钠离子浓度达到400mmol/L时,山莨菪碱就不能再诱导DPPG形成交插凝胶相。  相似文献   

5.
突触结合蛋白Ⅰ的胞质片段与磷脂膜的相互作用   总被引:2,自引:0,他引:2  
突触结合蛋白Ⅰ是神经细胞突触囊泡上的一个膜整合蛋白,C2AB是其具有重要功能的胞质片段.近年的研究表明,突触结合蛋白Ⅰ在钙引发的神经递质快速释放过程中起到钙感受器的作用,它与神经细胞突触前膜的相互作用与其生理功能有关,但是其作用机制还不清楚.利用气/液单层膜技术结合荧光发射光谱和圆二色光谱技术,发现C2AB倾向于插入带负电荷的磷脂膜中(如磷脂酰丝氨酸),而且插膜是钙依赖性的;对于不带电荷的磷脂不插膜.C2AB与膜之间的作用力主要为静电力.荧光发射光谱和圆二色光谱结果显示,它与膜相互作用时二级结构不发生显著变化.结果表明,突触结合蛋白Ⅰ钙依赖的插入负电荷膜特点,可以帮助解释其钙感受器的作用机制.  相似文献   

6.
莱氏衣原体膜上Mg~(2+)-ATPase用DOC溶解后,经Sepharose-6B和DEAE-CelluloseDE-52离子交换柱,得到了部分纯化的Mg~(2+)ATPase,并将此ATPase与不同极性头部的磷脂和膜糖脂重组,研究了不同的极性头部的磷脂和膜糖脂对ATPase活性的影响。此酶的活性不依赖酸性磷脂,PG、DPG、大豆磷脂等明显抑制酶活性,中性磷脂DMPC、PE、PC则能增加酶活性,其中尤以非双层脂PE的作用最为明显。从莱氏衣原体膜上提取的糖脂(MGDG,DGDG)单独和ATPase重组时,酶活性增加并不明显,当MGDG和DGDG以等比例混合时,能大大地增加酶活性。这表明Mg~(2+)-ATPase的活性很大程度上与磷脂的表面电荷及磷脂的组成相关。  相似文献   

7.
利用GFP示踪细胞内源性P53活性检测DNA损伤   总被引:2,自引:1,他引:1  
DNA损伤的检测对预防癌症和遗传病等非常重要。采用分子克隆技术,将报告基因—绿色荧光蛋白(GFP)置于SV40基本启动子调控下,构建成对照载体pSV-GFP。在SV40基本启动子上游插入寡核苷酸P53RE,构建成示踪载体p53RE-GFP。转染NIH3T3细胞,以GFP示踪细胞内源性P53的转录激活活性。紫外线照射或H2O2处理转化细胞使DNA损伤,诱导细胞内源性P53的表达。用激光扫描共聚焦成像系统(LSCIS)对细胞进行红、绿、蓝三色光融合成像,并测定GFP经488nm激发后发出的绿色荧光光密度,验证GFP示踪P53的特异性。p53RE-GFP转化细胞3T3-REG经紫外线照射或H2O2处理后,GFP的表达增高,处理后1hr光密度即达到最高水平,随后逐渐降低。血清“饥饿”—非DNA损伤处理的3T3-REG细胞,以及经紫外和H2O2处理的对照载体pSV-GFP转化细胞3T3-SVG,GFP的表达无明显增强。实验表明:GFP示踪内源性P53转录激活活性用于检测DNA损伤有很高的灵敏度和特异性,适宜推广应用。  相似文献   

8.
P物质(SP)能神经元及其轴突末梢和受体广泛分布于很多心血管中枢。外侧下丘脑含SP能神经元,外侧下丘脑投射的升压区内又存在SP能纤维及SP受体;因此本工作检验SP在外侧下丘脑升压反应中的作用。实验显示:(1)L-谷氨酸(Glu)兴奋外侧下丘脑的穹窿周围区(LH/PF)或将SP分别注入各LH投射区:蓝斑(LC)、臂旁核(NPB)或中脑导水管周围灰质(PAG)均引起升压反应;(2)[D-Pro2,D-Phe7,D-Trp9]-SP(SP拮抗剂)预先注入LC或PAG可使Glu兴奋LH/PF引起的升压反应减小,而注入NPB对该反应无明显影响;(3)双侧延髓头端腹外侧区(RVL)分别用酚妥拉明、心得安或阿托品预处理也可明显削弱该反应。结合我们以往的实验结果:RVL内的α-、β-、M-受体介导LC升压反应,α-和β-受体介导PAG-升压反应;本工作显示LH/PF可通过其SP能投射纤维作用于LC-RVL和PAG-RVL升压系统而实现其升压反应。  相似文献   

9.
编码纤维蛋白β链N末端七肽(β七肽)的寡核苷酸片段,通过基因重组技术插入到金葡核酸酶(P-1蛋白)基因的5′端。在P_RP_L启动子的调控下,β七肽以融合蛋白(β七肽·P-1)的形式在E.colfi细胞中得到高效表达。以纯化的融合蛋白为免疫原,制备出抗β七肽抗体;纤维蛋白原(FG,4g/L抑制实验证明,该抗体对纤维蛋白(FP)有特异性反应。  相似文献   

10.
大肠杆菌表达质粒pSM43及pSM53的构建   总被引:1,自引:0,他引:1  
利用已成功高表达era基因的质粒pCE31翻译起始码上游的序列,去构建大肠杆菌新的外源基因表达载体。先合成特定序列的单链脱氧寡核苷酸,以改进的实验程序插入pJL6,其后再加上限制酶多克隆位点。所构建的pSM43和pSM53分别适合於不带翻译起码(ATG)和带起始码的基因插入、表达非融合目的蛋白质之用。并已成功用於人肿瘤坏死因子、人骨形成蛋白、HIV蛋白酶、Duchenne肌营养不良等cDNA基因的  相似文献   

11.
Apocytochrome c has a potent ability to insert spontaneously into membrane. To identify which sequences were critical for this insertion activity, a series of peptides N19, C8, C15 and C21, corresponding to sequences 1-19, 81-88, 74-88 and 68-88 of apocytochrome c, respectively, were synthesized and purified. Insertion ability into phospholipid monolayer, intrinsic fluorescence emission spectra, and the accessibility of peptide C21 to fluorescence quenchers: KI, acrylamide and HB showed that only segment 68-88 could insert into membrane, while other segments did not. CD spectra demonstrated that its interaction with liposomes containing negatively charged phospholipid could induce a partial alpha-helical conformation in peptide C21. It is interesting to note that a cooperation exists between segment 68-88 and 1-19 in the insertion of apocytochrome c and consequently translocation across membrane.  相似文献   

12.
The membrane insertion of urea-denatured colicin E1 was studied by using fluorescence spectroscopy, circular dichroism and monolayer techniques. The results showed that the denatured colicin E1 taking mainly the 'random coil' conformation may recover its orderliness to a certain extent under the induction of the phospholipid membrane and insert spontaneously into phospholipid membrane, indicating that unfolding of colicin E1 does not inhibit its membrane insertion. Among the four tryptophan residues of the membrane-bound colicin E1 molecules, at least two were accessible by the quenchers, i.e. not inserted into the membranes. Although urea-denatured colicin E1 interacted preferentially with negatively charged phospholipids, it seems less dependent on the negatively charged lipid than colicin A. The addition of urea increased the speed of the adsorption of colicin E1 to the membrane, but did not affect obviously its membrane insertion ability.  相似文献   

13.
SecA-lipid interactions are believed to be important for the translocation of precursor proteins across the inner membrane of Escherichia coli [Lill, R., Dowhan, W., & Wickner, W. (1990) Cell 60, 271-280]. SecA insertion into the phospholipid bilayer could a role in this process. We investigated this possibility by studying the interactions between SecA and different phospholipids using the monolayer technique. It was established that SecA is surface-active and can insert into lipid monolayers. This insertion was greatly enhanced by the negatively charged lipids DOPG and Escherichia coli cardiolipin. Insertion of SecA into these negatively charged lipids could be detected up to initial surface pressures of 34 mN/m for DOPG and 36 mN/m for Escherichia coli cardiolipin, implying a possible role for negatively charged lipids in the insertion of SecA in biological membranes. High salt concentrations did not inhibit the SecA insertion into DOPG monolayers, suggesting not only an electrostatic but also a hydrophobic interaction of SecA with the lipid monolayer. ATP decreased both the insertion (factor 2) and binding (factor 3) of SecA to DOPG monolayers. ADP and phosphate gave a decrease in the SecA insertion to the same extent as ATP, but the binding of SecA was only slightly reduced. AMP-PNP and ATP-gamma-S did not have large effects on the insertion or on the binding of SecA to DOPG monolayers. The physiological significance of these results in protein translocation is discussed.  相似文献   

14.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In the neuron, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins assemble into an alpha-helical coiled coil that bridges the synaptic vesicle to the plasma membrane and drives membrane fusion, a required process for neurotransmitter release at the nerve terminal. How does coiled coil formation drive membrane fusion? To investigate the structural and energetic coupling between the coiled coil and membrane, the recombinant SNARE complex in the phospholipid bilayer was studied using fluorescence quenching and site-directed spin labeling EPR. Fluorescence analysis revealed that two native Trp residues at the membrane-proximal region of the coiled coil are inserted into the membrane, tightly coupling the coiled coil to the membrane. The EPR results indicate that the coiled coil penetrates into the membrane with an oblique angle, providing a favorable geometry for the basic residues to interact with negatively charged lipids. The result supports the proposition that core complex formation directly leads to the apposition of two membranes, which could facilitate lipid mixing. Trp residues and basic residues are abundant at the membrane-proximal region of transmembrane SNARE proteins, suggesting the generality of the proposed mechanism for the SNARE complex-membrane coupling.  相似文献   

16.
M Rafalski  J D Lear  W F DeGrado 《Biochemistry》1990,29(34):7917-7922
Peptides representing the N-terminal 23 residues of the surface protein gp41 of LAV1a and LAVmal strains of the human immunodeficiency virus were synthesized and their interactions with phospholipid vesicles studied. The peptides are surface-active and penetrate lipid monolayers composed of negatively charged but not neutral lipids. Similarly, the peptides induce lipid mixing and solute (6-carboxyfluorescein) leakage of negatively charged, but not neutral, vesicles. Circular dichroism and infrared spectroscopy show that at low peptide:lipid ratios (approximately 1:200), the peptides bind to negatively charged vesicles as alpha-helices. At higher peptide:lipid ratios (1:30), a beta conformation is observed for the LAV1a peptide, accompanied by a large increase in light scattering. The LAVmal peptide showed less beta-structure and induced less light scattering. With neutral vesicles, only the beta conformation and a peptide:lipid ratio-dependent increase in vesicle suspension light scattering were observed for both peptides. We hypothesize that the inserted alpha-helical form causes vesicle membrane disruption whereas the surface-bound beta form induces aggregation.  相似文献   

17.
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.  相似文献   

18.
Novel cationic antimicrobial peptides typified by structures such as KKKKKKAAXAAWAAXAA-NH2, where X = Phe/Trp, and several of their analogues display high activity against a variety of bacteria but exhibit no hemolytic activity even at high dose levels in mammalian erythrocytes. To elucidate their mechanism of action and source of selectivity for bacterial membranes, phospholipid mixtures mimicking the compositions of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol) were challenged with the peptides. We found that peptides readily inserted into bacterial lipid mixtures, although no insertion was detected in model "mammalian" membranes. The depth of peptide insertion into model bacterial membranes was estimated by Trp fluorescence quenching using doxyl groups variably positioned along the phospholipid acyl chains. Peptide antimicrobial activity generally increased with increasing depth of peptide insertion. The overall results, in conjunction with molecular modeling, support an initial electrostatic interaction step in which bacterial membranes attract and bind peptide dimers onto the bacterial surface, followed by the "sinking" of the hydrophobic core segment to a peptide sequence-dependent depth of approximately 2.5-8 A into the membrane, largely parallel to the membrane surface. Antimicrobial activity was likely enhanced by the fact that the peptide sequences contain AXXXA sequence motifs, which promote their dimerization, and possibly higher oligomerization, as assessed by SDS-polyacrylamide gel analysis and fluorescence resonance energy transfer experiments. The high selectivity of these peptides for nonmammalian membranes, combined with their activity toward a wide spectrum of Gram-negative and Gram-positive bacteria and yeast, while retaining water solubility, represent significant advantages of this class of peptides.  相似文献   

19.
The human immunodeficiency virus gp41 envelope protein mediates the entry of the virus into the target cell by promoting membrane fusion. In order to gain new insights into the viral fusion mechanism, we studied a 35-residue peptide pertaining to the loop domain of gp41, both in solution and membrane bound, by using infrared and fluorescence spectroscopy. We show here that the peptide, which has a membrane-interacting surface, binds and interacts with phospholipid model membranes and tends to aggregate in the presence of a membranous medium and induce the leakage of vesicle contents. The results reported in this work, i.e., the destabilization and fusion of negatively charged model membranes, suggest an essential role of the loop domain in the membrane fusion process induced by gp41.  相似文献   

20.
Daptomycin is a cyclic anionic lipopeptide with an antibiotic activity that is completely dependent on the presence of calcium (as Ca2+). In a previous study [Jung et al., 2004. Chem. Biol. 11, 949-957], it was concluded that daptomycin underwent two Ca2+-dependent structural transitions, whereby the first transition was solely dependent on Ca2+, while the second transition was dependent on both Ca2+ and the presence of negatively charged lipids that allowed daptomycin to insert into and perturb bilayer membranes with acidic character. Differences in the interaction of daptomycin with acidic and neutral membranes were further investigated by spectroscopic means. The lack of quenching of intrinsic fluorescence by the water-soluble quencher, KI, confirmed the insertion of the daptomycin Trp residue into the membrane bilayer, while the kynurenine residue was inaccessible even in an aqueous environment. Differential scanning calorimetry (DSC) indicated that the binding of daptomycin to neutral bilayers occurred through a combination of electrostatic and hydrophobic interactions, while the binding of daptomycin to bilayers containing acidic lipids primarily involved electrostatic interactions. The binding of daptomycin to acidic membranes led to the induction of non-lamellar lipid phases and membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号