首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the abilities of VIP and secretin to occupy receptors and to increase cellular cyclic AMP using dispersed acini from guinea pig pancreas. The dose-inhibition curve for inhibition of binding of 125I-VIP by VIP was broad with detectable inhibition at 0.1 nM VIP, half-maximal inhibition at 2 nM VIP and complete inhibition at 10 microM VIP. Secretin also inhibited binding of 125I-VIP was compatible with two VIP-preferring receptors with one class having a high affinity for VIP (Kd 1.1 nM) and a low affinity for secretin (Kd 5 microM) and the other class having an intermediate affinity for VIP (Kd 470 nM). The dose inhibition curve for inhibition of binding of 125I-secretin by secretin was not broad. Half-maximal inhibition occurred with 7 nM secretin or with 10 microM VIP. Computer analysis was compatible with a single secretin-preferring receptor with a high affinity for secretin (Kd 7 nM) and a low affinity for VIP (Kd 5.9 microM). Comparison of the ability of VIP to increase cyclic AMP with or without the secretin-receptor antagonist, secretin-5-27, demonstrated only occupation of the high affinity VIP-preferring or high affinity secretin-preferring receptors increase cyclic AMP. Our results demonstrate that, in contrast to previous reports, guinea pig pancreatic acini possess 3 classes of receptors that interact with VIP and secretin. The low affinity receptor seen with 125I-VIP is not the same as the secretin-preferring receptor and does not increase cellular cyclic AMP.  相似文献   

2.
Functional vasoactive intestinal peptide (VIP) receptors have been characterized in rat peritoneal macrophages. The binding depended on time, temperature and pH, and was reversible, saturable and specific. Scatchard analysis of binding data suggested the presence of two classes of binding sites: a class with high affinity (kd = 1.1 +/- 0.1 nM) and low capacity (11.1 +/- 1.5 fmol/10(6) cells), and a class with low affinity (kd = 71.6 +/- 10.2 nM) and high capacity (419.0 +/- 80.0 fmol/10(6) cells). Structural requirements of these receptors were studied with peptides structurally or not structurally related to VIP. Several peptides inhibited 125I-VIP binding to rat peritoneal macrophages with the following order of potency: VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, somatostatin, pancreastatin and octapeptide of cholecystokinin (CCK 26-33) were ineffective. VIP induced an increase of cyclic AMP production. Half-maximal stimulation (ED50) was observed at 1.2 +/- 0.5 nM VIP, and maximal stimulation (3-fold above basal levels) was obtained between 0.1-1 microM. Properties of these binding sites strongly support the concept that VIP could behave as regulatory peptide on the macrophage function.  相似文献   

3.
Insulin receptors have been characterized in rat prostatic epithelial cells by using [125I]insulin and a variety of physicochemical conditions. The binding data at equilibrium (2 h at 15 degrees C) could be interpreted in terms of two populations of insulin receptors: a class of receptors with high affinity (Kd = 2.16 nM) and low binding capacity (28.0 fmol mg-1 protein), and another class of receptors with low affinity (Kd = 0.29 microM) and high binding capacity (1.43 pmol mg-1 protein). Proinsulin exhibited a 63-fold lower affinity than insulin for binding sites whereas unrelated peptides were ineffective. The specific binding of insulin increased by about 50 per cent after 96 h of fasting; this increase could be explained by an increase of both the number of the high affinity-low capacity sites and the affinity of the low affinity-high capacity sites. These results together with previous studies on insulin action at the prostatic level strongly suggest that insulin may exert a physiological role on the prostatic epithelium.  相似文献   

4.
The binding characteristics of the beta-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6 +/- 1.3 nM) but low capacity (32 +/- 17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both beta-antagonists and beta-agonists, competition at the low-affinity sites occurred only with beta-antagonists and was non-stereoselective. Thus, the beta-agonist (-)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6 +/- 0.5 nM) binding sites with a binding capacity of 53 +/- 13 fmol/mg membrane protein (corresponding to 4000 +/- 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a beta 1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of beta-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (-)-isoproterenol represent the physiologically relevant beta-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (-)-norepinephrine showed that the inhibitory effect of the alpha 2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the alpha 2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

5.
Vasoactive intestinal polypeptide (VIP) interaction with a 94% pure preparation of monocytes isolated from human peripheral blood was studied by direct binding technique using 3-[125I]tyrosyl-VIP as a tracer ligand. Scatchard analysis of binding data was compatible with two classes of binding sites, one with Kd = 0.25 nM and maximal binding capacity of 16 fmol/10(6) cells, and another one with Kd = 25 nM and maximal binding capacity of 180 fmol/10(6) cells. The binding was time-, temperature-, and pH-dependent and was saturable, reversible, and specific. This study has demonstrated that human monocytes have high affinity/low capacity as well as low affinity/high capacity binding sites for VIP. No specific VIP binding was found in pure preparations of human granulocytes, platelets or erythrocytes.  相似文献   

6.
Guanine nucleotides were observed to modify the binding of 125I-angiotensin II to rat hepatic plasma membrane receptors. GTP and its nonhydrolyzable analogues greatly increased the dissociation rate of bound 125I-angiotensin II and altered hormone binding to the receptor under equilibrium conditions. In the absence of GTP, 125I-angiotensin II labeled both high affinity sites (Kd1 = 0.46 nM, N1 = 650 fmol/mg) and low affinity sites (Kd2 = 4.1 nM, N2 = 1740 fmol/mg). In the presence of guanine nucleotides, the affinities of the two sites were unchanged, but the number of high affinity sites decreased markedly to 52 fmol/mg. In analogous experiments using the angiotensin II antagonist, 125I-sarcosine1,Ala8-angiotensin II (125I-saralasin), guanine nucleotides minimally affected the interaction of 125I-saralasin with its receptor, increasing the dissociation rate 1.9-fold and the Kd 1.4-fold. The guanine nucleotide inhibition of agonist binding required a cation such as Na+ or Mg2+, with a maximal effect occurring at about 1 mM Mg2+. In liver plasma membranes prepared in EDTA, angiotensin II inhibited basal and glucagon-stimulated adenylate cyclase activities by 30% and 10%, respectively. Angiotensin II also caused a 40% inhibition of glucagon-stimulated cyclic AMP accumulation in intact hepatocytes, with a half-maximal effect occurring at 1 nM. The inhibition by angiotensin II of adenylate cyclase in membranes and of cAMP levels in intact cells could be reversed by the antagonist sarcosine1,Ile8-angiotensin II. Vasopressin caused a smaller 26% inhibition of glucagon-stimulated cyclic AMP accumulation. The ability of angiotensin II to inhibit cyclic AMP synthesis may provide an explanation for the observed effects of guanine nucleotides on 125I-angiotensin II binding to plasma membranes.  相似文献   

7.
Specific binding sites for somatostatin have been identified and characterized in cytosolic fraction of rabbit gastric mucosa at both antrum and fundus levels. The binding depended on time, temperature and pH, and was reversible and saturable. The stoichiometric data suggested the presence of two classes of binding sites: a class with high affinity (Kd = 26.7 and 37.0 nM in antrum and fundus, respectively) and low capacity (2.1 and 4.1 pmol somatostatin/mg protein in antrum and fundus, respectively), and a class with low affinity (Kd = 246.4 and 162.5 nM in antrum and fundus, respectively) and high capacity (134.1 and 110.9 pmol somatostatin/mg protein in antrum and fundus, respectively) at 25 degrees C and pH 7.4. The binding sites were shown to be highly specific for somatostatin since neuropeptides such as Leu-enkephalin, neurotensin and substance P behaved as ligands with very low affinity.  相似文献   

8.
In human antral membranes, VIP and its natural analogs inhibited the binding of HPLC-purified 125I-VIP, according to the following order of potency: VIP greater than rh GRF greater than helodermin greater than r PHI greater than PHM greater than p PHI greater than hp GRF greater than h, p secretin. No specific binding was detected in plasma membranes purified from the human fundus. In human antral membranes, Scatchard plots were compatible with the existence of two classes of VIP receptors, the first class with high affinity and low binding capacity (Kd = 0.1 nM, Bmax = 10 fmol/mg protein) and another class with a low affinity and higher binding capacity (Kd = 12) nM, Bmax = 1,000 fmol/mg protein). The structure of the VIP receptor in purified plasma membranes prepared from human antral glands and from the HGT-1 human gastric cancer cells was subsequently probed using the cross-linking reagent DSP and 125I-VIP. In agreement with the pharmacological study and the Scatchard analysis of the binding data, SDS gel electrophoresis of the solubilized receptor identified two radiolabeled peptides Mr 67,000 and 34,000 containing disulfide bonds. According to its sensitivity to low doses of VIP and to GTP, the Mr 67,000 binding site represents the membrane domains involved in the physiologial regulation of adenylate cyclase by VIP in normal and transformed human gastric epithelia.  相似文献   

9.
10.
A L Kirifides  J A Harvey  V J Aloyo 《Life sciences》1992,50(17):PL139-PL142
Binding of the cocaine analog [3H] WIN 35,428 was investigated in rat and rabbit caudate. In membranes prepared from fresh tissue, [3H] WIN 35,428 binding was characterized by a single high affinity site with a Kd of 2.5 nM for the rabbit and 5.3 nM for the rat. In contrast, [3H] WIN 35,428 binding to membranes prepared from frozen tissue (stored at -70 degrees C) revealed two binding sites, a high affinity site similar to the one observed in membranes from fresh tissue and a low affinity site with a Kd of 39 nM for the rabbit and 65 nM for the rat. The low affinity WIN 35,428 binding site was observed only in membranes derived from frozen tissue, suggesting that it was an artifact produced by the freezing/thawing process.  相似文献   

11.
A high density (in the pmol/mg protein range) of specific functional receptors for PACAP (pituitary adenylate cyclase activating polypeptide) was observed in membranes from rat brain cortex, olfactory bulb, hypothalamus, hippocampus, striatum, cerebellum, pons and cervico-dorsal spinal cord, using [125I]PACAP-27 (PACAP 1-27). The tracer bound rapidly, specifically and reversibly. Competition binding curves were compatible with the coexistence, in the eight central nervous areas explored, of high and low affinity binding sites for PACAP-27 (Kd of 0.2 nM and 3.0 nM, respectively), and of only one class of binding sites for PACAP-38 (PACAP (1-38), Kd 0.2-0.9 nM). VIP inhibited only partially the binding of [125I]PACAP-27, and PHI, GRF(1-29)NH2 and secretin were ineffective at 1 microM. Chemical [125I]PACAP-27 cross-linking revealed a single specific 64 kDa protein species. In rat brain cortical membranes, saturation and competition experiments, using [125I]PACAP-38 as radioligand, indicated the presence of both high (Kd 0.13 nM) and low (Kd 8-10 nM) affinity binding sites for PACAP-38 and of low affinity (Kd 30 nM) binding sites for PACAP-27. These data taken collectively suggest the coexistence of PACAP-A receptors with a slight preference for PACAP-27 over PACAP-38 and of PACAP-B receptors that recognize PACAP-38 with a high affinity and PACAP-27 with low affinity. Both PACAP-27 and PACAP-38 stimulated adenylate cyclase with similar potency and efficacy. VIP was markedly less potent in this respect and also less efficient, except on cerebellar membranes.  相似文献   

12.
The properties of the specific receptors for vasoactive intestinal peptide (VIP) in rat liver plasma membranes have been studied by using 125I-VIP as a tracer. The binding of the peptide was a reversible, saturable and specific process, as well as time and temperature dependent. Peptide inactivation was also dependent on time and temperature and remained relatively low in the standard conditions used, as it happened in the inactivation of the binding sites. The binding data were compatible with the existence of two classes of VIP receptors: a high affinity (Kd = 4.2 x 10(-10) M) and low binding capacity (1.5 pmol VIP/mg protein) class and another one of low affinity (Kd = 1.7 x 10(-7) M) and high binding capacity (38.6 pmol VIP/mg protein). The specificity of the binding sites of VIP was established from the fact that binding of 125I-VIP was inhibited by native VIP and by 60-fold higher concentrations of secretin but not by the parent hormone glucagon, by insulin or somatostatin at concentrations as high as 10(-6) M.  相似文献   

13.
Receptors for vasoactive intestinal peptide (VIP) have been characterized in rat lymphoid cells. The interaction of [125I] VIP with blood mononuclear cells was rapid, reversible, specific and saturable. At apparent equilibrium, the binding of [125I] VIP was competitively inhibited by native VIP in the 0.01-100 nM range concentration. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.050 +/- 0.009 nM and a low binding capacity (2.60 +/- 0.28 fmol/10(6) cells), and a low-affinity class with a Kd = 142 +/- 80 nM and a high binding capacity (1966 +/- 330 fmol/10(6) cells). Secretin, glucagon, insulin and somatostatin did not show any effect at a concentration as high as 100 nM. With spleen lymphoid cells, stoichiometric studies were performed. The binding data were compatible with the existence of two classes of receptors: a high-affinity class with a Kd = 0.100 +/- 0.033 nM and a low binding capacity (4.60 +/- 1.07 fmol/10(6) cells), and low-affinity class with a Kd = 255 +/- 110 nM and high binding capacity (2915 +/- 1160 fmol/10(6) cells). With thymocytes, no binding was obtained under different conditions.  相似文献   

14.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

15.
The disappearance of vasoactive-intestinal-peptide (VIP) binding sites at the cell surface of a cultured target cell, originating from a human colonic adenocarcinoma (HT 29 cell line), was studied, after preexposition of the cell to the peptide, as a function of time, VIP concentration and temperature. Maximum effect (60-80% loss of binding capacity) was obtained after a 5-10 min exposure of the cells at 37 degrees C with a VIP concentration of 100 nM. The t1/2 of maximum disappearance was less than 2 min and the concentration of native VIP giving half-maximum decrease in 125I-VIP binding was 6 nM. The affinity of remaining binding sites for VIP was not affected compared to that of control cells (Kd = 0.3 nM). Disappearance of VIP binding sites was specific since, with the same conditions of preincubation, the specific binding of 125I-labeled epidermal growth factor to HT 29 cells was not modified. The phenomenon was reversible and 90% of binding capacity could be restored in less than 60 min by incubating cells in VIP-free medium. Correlatively we showed, by two independent experimental procedures, that 125I-VIP, initially bound to HT 29 cells, was maximally internalized after 10 min of incubation at 37 degrees C. All the data strongly suggest that: internalization of VIP is receptor-mediated; upon exposure to native VIP, VIP receptors are down-regulated or at least sequestered within HT 29 cells.  相似文献   

16.
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist [3H]BK and the antagonist [3H]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for [3H]BK and a Kd of 3.8 nM for the antagonist [3H]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left [3H]NPC17731 binding unaffected, but reduced the receptor affinity for [3H]BK to a Kd of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C. The rank order of the guanosine nucleotides for [3H]BK binding reduction was GTP[gammaS] = Gpp[NH]p > GTP = GDP > GDP[betaS]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed.  相似文献   

17.
Vasoactive intestinal peptide (VIP) stimulated protein kinase activity in HeLa cells. Maximal activation by the peptide required the simultaneous presence of a phosphodiesterase inhibitor. The response was dose-dependent in the 0.3–10 nM range, half-maximal stimulation being observed at 1 nM VIP. This value agrees with the concentration of VIP required for half-maximal stimulation of cyclic AMP production as well as with the Kd of the high affinity binding sites for VIP in the same cell system (15). Secretin also stimulated protein kinase activity but with a 300-times lower potency than VIP. When DNA synthesis in Hela cells was studied, no effect of VIP could be seen in a 0.1–100 nM range of peptide concentration.  相似文献   

18.
There is little dispute that high density lipoprotein (HDL) binds to cells, however, the nature of the interaction is not fully understood. We now present evidence for a new binding site of higher affinity but lower capacity than the sites previously described in the literature. This new site is characterized by high affinity/low capacity for HDL binding (Kd = 0.94 microgram/ml, Bmax = 36 ng/mg), while the low affinity site (Kd = 36 micrograms/ml, Bmax approximately 700 ng/mg) appears to be consistent with the literature values for the interaction of HDL with cells and isolated membranes. Proteolysis of HDL with trypsin abolished its interaction with the high affinity site, suggesting an apolipoprotein requirement, while having no effect on binding to the lower affinity site. Kinetic rates of association/dissociation were determined in order to further characterize the high affinity site. At a concentration which favored the binding of HDL with the high affinity site (1 microgram/ml, 37 degrees C), the time course of association of HDL with rat liver plasma membranes, displayed a biphasic pattern, requiring 6-8 h to reach the level of binding predicted from the saturation studies. The second phase was highly sensitive to temperature, being considerably slower at 24 degrees C and totally abolished at 0 degrees C. A kinetic Kd, derived from the measured association and dissociation rate constants (Kd = 0.31 microgram/ml), was found to be of a similar magnitude to the Kd calculated for the high affinity site by Scatchard analysis (Kd = 0.94 microgram/ml). In summary, the high affinity site on rat liver plasma membranes displays an apoprotein requirement and kinetic parameters, consistent with a ligand-receptor interaction.  相似文献   

19.
The characteristics of the binding of the hydrophilic beta-adrenergic antagonist [3H]CGP 12177 to intact rat adipocytes were studied at 37 degrees C and 6 degrees C. At both temperatures and at 90% saturation, the non-specific binding was less than 30% of the total binding. At 37 degrees C, specific [3H]CGP 12177 binding was rapid, reversible of high affinity (1.8 +/- 0.4 nM) and saturable. The number of specific binding sites per adipocyte increased with the fat cell size (about 35 000 and 115 000 sites per cell in adipocytes with diameters of 60 microns and 88 microns, respectively) but remained constant when expressed per unit fat cell surface area. Displacement of [3H]CGP 12177 bound to adipocytes by unselective and selective beta-antagonists was stereospecific, had the same characteristics as those found in adipocyte membranes and showed a heterogeneous specificity for beta 1 and beta 2 adrenergic subtypes. In contrast, beta agonist competition curves, which modeled to two affinity-states of binding, showed high-affinity-state Kd values for agonists 10-25-times higher than those found in membranes under the same experimental conditions. At 6 degrees C, although the number and affinity of the specific binding sites for [3H]CGP 12177 were the same as those found at 37 degrees C, the Kd value for (-)-isoproterenol binding to the high affinity state of these sites (3.0 +/- 0.5 nM) was 25-times lower than at 37 degrees C and similar to the value found in membrane preparations (1.5-4 nM). These results show that the [3H]CGP 12177 specific binding sites detected on intact adipocytes represent the physiological beta-adrenergic receptors. Moreover, this study extends to the adipocyte the validity of the model recently proposed for other cell lines, according to which in intact cells, but not in membranes, agonist-binding promotes a rapid and temperature-dependent conformational change of the beta-adrenergic receptors, leading to a progressive loss of capacity of agonists to form a high-affinity complex.  相似文献   

20.
To clarify the function of ACTH receptors, the actions of ACTH on cyclic AMP formation, Ca2+-influx across cell membrane, and corticoidogenesis were examined using dispersed adrenocortical cells prepared from the rat adrenal gland. 1) There are two types of ACTH receptors from Scatchard analysis of 125I-ACTH1-24 binding to the cell, the one receptor is of high affinity and low capacity (dissociation constant (Kd1) = 2.6 x 10(-19) M and 7,350 sites per cell), and the other one is of low affinity and high capacity (dissociation constant (Kd2) = 7.1 x 10(-9)M and 57,400 sites per cell). 2) Both apparent dissociation constants derived from the effects of ACTH on corticoidogenesis and Ca2+ influx well correspond with Kd1 of the high affinity receptor, 3) Apparent dissociation constant obtained from the effect of ACTH on cyclic AMP formation is in good agreement with Kd2 of the low affinity receptor. Thus it could be deduced from these data that the high affinity receptor is concerned with an increased Ca2+-influx to regulate corticoidogenesis at physiological levels of ACTH, whereas the low affinity receptor is coupled to adenylate cyclase at supraphysiological concentrations of ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号