首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green fluorescent protein (GFP) is useful for studying protein trafficking in plant cells. This utility could potentially be extended to develop an efficient secretory reporter system or to enable on-line monitoring of secretory recombinant protein production in plant cell cultures. Toward this end, the aim of the present study was to: (1) demonstrate and characterize high levels of secretion of fluorescent GFP from transgenic plant cell culture; and (2) examine the utility of GFP fluorescence for monitoring secreted recombinant protein production. In this study we expressed in tobacco cell cultures a secretory GFP construct made by splicing an Arabidopsis basic chitinase signal sequence to GFP. Typical extracellular GFP accumulation was 12 mg/L after 10 to 12 days of culture. The secreted GFP is functional and it accounts for up to 55% of the total GFP expressed. Findings from culture treatments with brefeldin A suggest that GFP is secreted by the cultured tobacco cells via the classical endoplasmic reticulum-Golgi pathway. Over the course of flask cultures, medium fluorescence increased with the secreted GFP concentrations that were determined using either Western blot or enzyme-linked immunoassay. Real-time monitoring of secreted GFP in plant cell cultures by on-line fluorescence detection was verified in bioreactor cultures in which the on-line culture fluorescence signals showed a linear dependency on the secreted GFP concentrations.  相似文献   

2.
Autophagic flux can be measured by determining the declining abundance of autophagic substrates such as sequestosome 1 (SQSTM1, better known as p62), which is sequestered in autophagosomes upon its direct interaction with LC3. However, the total amount of p62 results from two opposed processes, namely its synthesis (which can be modulated by some cellular stressors including autophagy inducers) and its degradation. To avoid this problem, we generated a stable cell line expressing a chimeric protein composed by p62 and the HaloTag (?) protein, which serves as a receptor for fluorescent HaloTag (?) ligands. Upon labeling with HaloTag (?) ligands (which form covalent, near-to-undissociable bonds with the Halotag (?) receptor) and washing, the resulting fluorescent labeling is not influenced by de novo protein synthesis, therefore allowing for the specific monitoring of the fusion protein decline without any interference by protein synthesis. We demonstrate that a HaloTag (?) -p62 fusion protein stably expressed in suitable cell lines can be used to monitor autophagy by flow cytometry and automated fluorescence microscopy. We surmise that this system could be adapted to high-throughput applications.  相似文献   

3.
In plants, the nuclear envelope (NE) is one of the least characterized cellular structures. In particular, little is known about its dynamics during the cell cycle. This is due to the absence of specific markers for in vivo studies. To generate such an in vivo marker, the suitability of the human lamin B receptor (LBR) was tested. When the first 238 amino acids of the LBR, fused to the green fluorescent protein (GFP), were expressed in tobacco plants, fluorescence accumulated only at the NE of leaf epidermal cells. This was confirmed by electron microscopy. The protein was shown to be membrane-integral by phase separation. Distribution of fluorescence was compared with two ER markers, GFP-calnexin and GFP-HDEL. While co-localization of all three markers was noted at the NE, only LBR-GFP was specific to the NE, while the other two also showed fluorescence of the cortical ER. These results suggest that common targeting mechanisms to those in animals and fungi exist in plants to direct and locate proteins to the NE. This chimaeric construct is the first available fluorescent integral membrane protein marker to be targeted exclusively to the plant NE and it provides a novel opportunity to investigate the dynamics of this membrane system in vivo. With it, the cell cycle was followed in tobacco BY-2 cells stably expressing the fusion protein. The interphase labelling of the NE altered in metaphase into an ER-like meshwork, suggesting the dispersal of the NE to ER as in animal cells. Finally, the meshwork of fluorescent membranes was lost and new fluorescent NE formed around the daughter nuclei.  相似文献   

4.
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro. Received: 17 May 1998 / Revision received: 2 September 1998 / Accepted: 23 November 1998  相似文献   

5.
6.
Trans-translation is an eubacterial quality control system to rescue the stalled ribosome, in which multiple components such as transfer messenger RNA (tmRNA) and Small protein B (SmpB) are involved. However, how these molecules interact with ribosome remains elusive. Here, we report the single molecule analysis of the trans-translation process. We developed a new method to label the functional ribosome, in which a tag protein (the HaloTag protein of 297 amino acids) was fused to the 30S ribosomal protein S2 and covalently labelled with specific ligand (HaloTag ligand), resulting in the stable and specific labelling of ribosome. Ribosomes were anchored onto the glass surface using biotinylated derivative of the Cy3 HaloTag ligand (i.e. biotin-Cy3-ligand), and real-time interactions of Cy5-tmRNA/SmpB/EF-Tu ternary complexes with anchored ribosomes are observed as a model of the trans-translation entry. Statistical analysis revealed that Cy5-tmRNA/SmpB/EF-Tu ternary complexes bind to the anchored ribosome with the second-order rate constant of 2.6 × 10(6) (1/M/s) and tmRNAs undergo multi-modal pathway before release from ribosome. The methods presented here are also applicable to the analysis for general translation processes.  相似文献   

7.
Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.  相似文献   

8.
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres.  相似文献   

9.
A simple procedure, which combines a chromosome preparation technique with an in situ labelling technique modified from fluorescence in situ hybridization (FISH), has been developed for in situ detection of plant programmed cell death (PCD) at the single-cell level. After exposure of chromosomes and nuclei on slides by enzymolysis, Klenow or TdT was used to incorporate Bio-dUTP or fluorescein-dUTP at sites of DNA breaks. After Klenow-mediated labelling, the signals were amplified by a cascade of antigen-antibody reaction according to the detection system of FISH. This method enables in situ detection of plant PCD in vivo morphologically and biochemically at the chromosome, nuclear and DNA levels without cell culture and histological sectioning. This technique permits labelling of DNA breaks with high sensitivity due to increased chromosome and nucleus exposure to the labelling solutions, as well as due to the immunological amplification of the signals. Moreover, the changes in the cells were easier to be observed because the spatial obstacle of the cell wall and its autofluorescence were eliminated. It is potentially useful for in situ detection of PCD in plant root meristematic cells triggered by various environmental abiotic factors. It is proposed that the root tip is a versatile in vivo system for studying PCD induced by environmental abiotic factors.  相似文献   

10.
The envelope glycoprotein (Env) of human immunodeficiency virus type I (HIV-1) mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD) between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv) can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.  相似文献   

11.
The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1(G12V)-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.  相似文献   

12.

Background  

Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation.  相似文献   

13.
The application of novel assays for basic cell research is tightly linked to the development of easy-to-use and versatile tools and protocols for implementing such technologies for a wide range of applications and model species. The bimolecular fluorescence complementation (BiFC) assay is one such novel method for which tools and protocols for its application in plant cell research are still being developed. BiFC is a powerful tool which enables not only detection, but also visualization and subcellular localization of protein–protein interactions in living cells. Here we describe the application of BiFC in plant cells while focusing on the use of our versatile set of vectors which were specifically designed to facilitate the transformation, expression and imaging of protein–protein interactions in various plant species. We discuss the considerations of using our system in various plant model systems, the use of single versus multiple expression cassettes, the application of our vectors using various transformation methods and the use of internal fluorescent markers which can assist in signal localization and easy data acquisition in living cells.  相似文献   

14.
Plant cell suspension cultures can be used to make safe vaccines at a lower cost than conventional procedures. An inducible gene expression system provides an opportunity to optimize the conditions of vaccine production in a plant system. In this investigation, a dexamethasone-inducible Norwalk virus capsid protein (NVCP) gene expression system has been developed in cell suspension cultures for four different plant species: tobacco (Nicotiana tabacum), rice (Oryza sativa L.), cotton (Gossypium hirsutum L.), and slash pine (Pinus elliottii Engelm.) via Agrobacterium-mediated transformation. Resulting transgenic cell lines were confirmed by Southern blot analyses and NVCP gene expression was confirmed by Northern blot analysis. NVCP gene expression was observed in all 24 cell lines tested, but there were minor differences in transgene expression among the transgenic cell lines. The highest level of NVCP gene expression was observed 48 h after addition of the glucocorticoid hormone dexamethasone (10 mg/l), for all transgenic cell lines derived from four different plant species. This investigation demonstrated that expression of NVCP in different transgenic cell lines and in different species was tightly controlled by the inducer, and the inducible gene expression system could be useful in controlling expression of NVCP or similar proteins for production of vaccines in cultured plant cells.  相似文献   

15.
The suitability of the recently described red fluorescent protein dsRED from reef corals for use as a reporter in plant molecular biology was investigated. Based on the clone pDSRED (Clontech), plant expression vectors were constructed for constitutive dsRED expression in the cytosol, the endoplasmic reticulum and the vacuole. Fluorescence microscopy of tobacco BY2 suspension culture cells transiently expressing the plant vectors generated proved that cytosolic expression of the dsRED gives rise to readily detectable levels of red fluorescence, whereas expression in the ER was poor. Vacuolar dsRED expression did not result in any significant fluorescence. dsRED transgenic tobacco SR1 plants were generated to test the sensitivity of dsRED as a reporter in an autofluorescent background, and to identify the possible impact of the introduced fluorescent protein on morphogenesis, plant development and fertility. During the transformation and regeneration phase plants did not show any abnormalities, indicating that dsRED is not interfering with plant development and morphogenesis. Regenerated plants were analysed by PCR, Western blot and fluorescence microscopy for the presence and expression of the transferred genes. The filter sets chosen for fluorescence microscopy proved to be able to block the red chlorophyll fluorescence completely, allowing specific dsRED detection. Best expression levels were obtained with dsRED targeted to the cytosol or chloroplasts. ER-targeted expression of dsRED also gave rise to readily detectable fluorescence levels, whereas vacuolar expression yielded no fluorescence. dsRED transgenic plant lines expressing the protein in the cytosol, ER or chloroplast proved to be fertile. Seed set and germination were normal, except that the seeds and seedlings maintained the red fluorescence phenotype.  相似文献   

16.
Ribosomal proteins and ribosomal associated proteins are complicated subjects to target and study because of their high conservation through evolution which led to highly structured and regulated proteins. Tagging of ribosomal proteins may allow following of protein synthesis in vivo and isolating translated mRNAs. HaloTag? is a new technology which allows detection in living cells, biochemical purification, and localization studies. In the present work, we tested HaloTag?-based ribosomal tagging. We focused on eIF6 (eukaryotic Initiation Factor 6 free 60S ribosomal marker), RACK1 (Receptor for Activated C Kinase 1; 40S and polysomes, not nuclear), and rpS9 (40S ribosomes, both in the nucleus and in the cytoplasm). Experiments performed on HEK293 cells included ribosomal profiles and Western blot on the fractions, purification of HaloTag? proteins, and fluorescence with time-lapse microscopy. We show that tagged proteins can be incorporated on ribosomes and followed by time-lapse microscopy. eIF6 properly accumulates in the nucleolus, and it is redistributed upon actinomycin D treatment. RACK1 shows a specific cytoplasmic localization, whereas rpS9 is both nucleolar and cytoplasmic. However, efficiency of purification varies due to steric hindrances. In addition, the level of overexpression and degradation may vary upon different constructs. In summary, HaloTag? technology is highly suitable to ribosome tagging, but requires prior characterization for each construct.  相似文献   

17.
Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells   总被引:2,自引:0,他引:2  
Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4 P ) is the most abundant polyphosphoinositide. 32Pi-labelling studies have shown that the turnover of PtdIns4 P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4 P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4 P , i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP–PHFAPP1 was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP–PHFAPP1 expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd–CFP, but not with the endocytic/pre-vacuolar marker GFP–AtRABF2b. Co-expression with the Ptdins3 P biosensor YFP–2 × FYVE revealed totally different localization patterns. During cell division, YFP–PHFAPP1 showed strong labelling of the cell plate, but PtdIns3 P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana , a clear PtdIns4 P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4 P in tip growth.  相似文献   

18.
Bolduc N  Ouellet M  Pitre F  Brisson LF 《Planta》2003,216(3):377-386
To date, few homologues of animal programmed cell death (PCD) regulators have been identified in plants. Among these is the plant Bax Inhibitor-1 (BI-1) protein, which possesses, like its human counterpart, the ability to suppress Bax-induced lethality in yeast cells. As the role of BI-1 in the regulation of plant PCD remains to be elucidated, we cloned BnBI-1 and NtBI-1 from cDNA libraries of oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.). The analysis of the deduced amino acid sequences of BnBI-1 and NtBI-1 indicated that these proteins share a relatively high level of identity with other plant BI-1 proteins (73-95%) as well as with animal BI-1 proteins (26-42%). Comparative analysis with other available plant BI-1 proteins allowed the establishment of a structural model presenting seven transmembrane domains. Moreover, transient co-transfection of Bax with BnBI-1 or NtBI-1 in human embryonic kidney 293 cells revealed that both proteins can substantially inhibit apoptosis induced by Bax overexpression. Localization studies were also conducted using stable transformation of tobacco BY-2 cells and Saccharomyces cerevisiae, or transient expression in tobacco leaves, with the fusion protein BnBI-1GFP under control of the cauliflower mosaic virus 35S promoter. All transformants showed a fluorescence pattern of distribution typical of an endoplasmic reticulum (ER) protein. Results from differential permeabilization experiments in BY-2 cells expressing BnBI-1GFP also showed that the C-terminus is located on the cytosolic side of the ER. Taken altogether, our results suggest that BI-1 is evolutionarily conserved and could act as a key regulator of a death pathway common to plants and animals.  相似文献   

19.
Chen MH  Huang LF  Li HM  Chen YR  Yu SM 《Plant physiology》2004,135(3):1367-1377
alpha-Amylases are important enzymes for starch degradation in plants. However, it has been a long-running debate as to whether alpha-amylases are localized in plastids where starch is stored. To study the subcellular localization of alpha-amylases in plant cells, a rice (Oryza sativa) alpha-amylase, alphaAmy3, with or without its own signal peptide (SP) was expressed in transgenic tobacco (Nicotiana tabacum) and analyzed. Loss-of-function analyses revealed that SP was required for targeting of alphaAmy3 to chloroplasts and/or amyloplasts and cell walls and/or extracellular compartments of leaves and suspension cells. SP was also required for in vitro transcribed and/or translated alphaAmy3 to be cotranslationally imported and processed in canine microsomes. alphaAmy3, present in chloroplasts of transgenic tobacco leaves, was processed to a product with Mr similar to alphaAmy3 minus its SP. Amino acid sequence analysis revealed that the SP of chloroplast localized alphaAmy3 was cleaved at a site only one amino acid preceding the predicted cleavage site. Function of the alphaAmy3 SP was further studied by gain-of-function analyses. beta-Glucuronidase (GUS) and green fluorescence protein fused with or without the alphaAmy3 SP was expressed in transgenic tobacco or rice. The alphaAmy3 SP directed translocation of GUS and green fluorescence protein to chloroplasts and/or amyloplasts and cell walls in tobacco leaves and rice suspension cells. The SP of another rice alpha-amylase, alphaAmy8, similarly directed the dual localizations of GUS in transgenic tobacco leaves. This study is the first evidence of SP-dependent dual translocations of proteins to plastids and extracellular compartments, which provides new insights into the role of SP in protein targeting and the pathways of SP-dependent protein translocation in plants.  相似文献   

20.
A novel selection marker for plant transformation alternative to antibiotic and herbicide resistance is described. The selective agent applied is 2-deoxyglucose (2-DOG) which in the cytosol of plant cells is phosphorylated by hexokinase yielding 2-DOG-6-phosphate (2-DOG-6-P). 2-DOG-6-P exerts toxic effects on overall cellular metabolism leading to cell death. We observed that constitutive expression of the yeast DOG R1 gene encoding a 2-DOG-6-P phosphatase resulted in resistance towards 2-DOG in transgenic tobacco plants. This finding was exploited to develop a selection system during transformation of tobacco and potato plants. The lowest concentration of 2-DOG leading to nearly complete inhibition of regeneration of wild-type explants was found to range between 400 and 600 mg/l 2-DOG for tobacco, potato and tomato plants. After Agrobacterium tumefaciens-mediated transformation cells expressing the DOG R1 gene were selected by resistance to 2-DOG. More than 50% of tobacco explants formed shoots and on average 50% of these shoots harboured the DOG R1 gene. Similar results were obtained for potato cv. Solara. The acceptability of the resistance gene derived from baker's yeast, the unobjectionable toxicological data of 2-DOG as well as the normal phenotype of DOG R1-expressing plants support the use of this selection system in crop plant transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号