首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Whitfield J  Neame SJ  Paquet L  Bernard O  Ham J 《Neuron》2001,29(3):629-643
Sympathetic neurons require nerve growth factor for survival and die by apoptosis in its absence. Key steps in the death pathway include c-Jun activation, mitochondrial cytochrome c release, and caspase activation. Here, we show that neurons rescued from NGF withdrawal-induced apoptosis by expression of dominant-negative c-Jun do not release cytochrome c from their mitochondria. Furthermore, we find that the mRNA for BIM(EL), a proapoptotic BCL-2 family member, increases in level after NGF withdrawal and that this is reduced by dominant-negative c-Jun. Finally, overexpression of BIM(EL) in neurons induces cytochrome c redistribution and apoptosis in the presence of NGF, and neurons injected with Bim antisense oligonucleotides or isolated from Bim(-/-) knockout mice die more slowly after NGF withdrawal.  相似文献   

5.
6.
7.
Changes in O(2) tension can significantly impact cell survival, yet the mechanisms underlying these effects are not well understood. Here, we report that maintaining sympathetic neurons under low O(2) inhibits apoptosis caused by NGF deprivation. Low O(2) exposure blocked cytochrome c release after NGF withdrawal, in part by suppressing the up-regulation of BIM(EL). Forced BIM(EL) expression removed the block to cytochrome c release but did not prevent protection by low O(2). Exposing neurons to low O(2) also activated hypoxia-inducible factor (HIF) and expression of a stabilized form of HIF-1alpha (HIF-1alpha(PP-->AG)) inhibited cell death in normoxic, NGF-deprived cells. Targeted deletion of HIF-1alpha partially suppressed the protective effect of low O(2), whereas deletion of HIF-1alpha combined with forced BIM(EL) expression completely reversed the ability of low O(2) to inhibit cell death. These data suggest a new model for how O(2) tension can influence apoptotic events that underlie trophic factor deprivation-induced cell death.  相似文献   

8.
9.
10.
11.
12.
13.
Sympathetic neurons undergo apoptosis when deprived of nerve growth factor (NGF). Inhibitors of RNA or protein synthesis block this death, suggesting that gene expression is important for apoptosis in this system. We have identified SM-20 as a new gene that increases in expression in sympathetic neurons after NGF withdrawal. Expression of SM-20 also increases during neuronal death caused by cytosine arabinoside or the phosphatidylinositol 3-kinase inhibitor LY294002. In addition, SM-20 protein synthesis is elevated in NGF-deprived neurons compared with neurons maintained with NGF. Importantly, expression of SM-20 in sympathetic neurons causes cell death in the presence of NGF. These results suggest that SM-20 may function to regulate cell death in neurons.  相似文献   

14.
15.
Nerve growth factor (NGF) serves a critical survival-promoting function for developing sympathetic neurons. Following removal of NGF, sympathetic neurons undergo apoptosis characterized by the activation of c-Jun N-terminal kinases (JNKs), up-regulation of BH3-only proteins including BcL-2-interacting mediator of cell death (BIM)EL, release of cytochrome c from mitochondria, and activation of caspases. Here we show that two small-molecule prolyl hydroxylase inhibitors frequently used to activate hypoxia-inducible factor (HIF) – ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) – can inhibit apoptosis caused by trophic factor deprivation. Both DHB and DMOG blocked the release of cytochrome c from mitochondria after NGF withdrawal, whereas only DHB blocked c-Jun up-regulation and phosphorylation. DHB, but not DMOG, also attenuated the induction of BIMEL in NGF-deprived neurons, suggesting a possible mechanism whereby DHB could inhibit cytochrome c release. DMOG, on the other hand, was substantially more effective at stabilizing HIF-2α and inducing expression of the HIF target gene hexokinase 2 than was DHB. Thus, while HIF prolyl hydroxylase inhibitors can delay cell death in NGF-deprived neurons, they do so through distinct mechanisms that, at least in the case of DHB, are partly independent of HIF stabilization.  相似文献   

16.
The signaling pathways that mediate the ability of NGF to support survival of dependent neurons are not yet completely clear. However previous work has shown that the c-Jun pathway is activated after NGF withdrawal, and blocking this pathway blocks neuronal cell death. In this paper we show that over-expression in sympathetic neurons of phosphatidylinositol (PI) 3-kinase or its downstream effector Akt kinase blocks cell death after NGF withdrawal, in spite of the fact that the c-Jun pathway is activated. Yet, neither the PI 3-kinase inhibitor LY294002 nor a dominant negative PI 3-kinase cause sympathetic neurons to die if they are maintained in NGF. Thus, although NGF may regulate multiple pathways involved in neuronal survival, stimulation of the PI 3-kinase pathway is sufficient to allow cells to survive in the absence of this factor.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号