首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced habitat quality after fragmentation can significantly affect population viability, but the effects of differing quality of the remaining habitat on population fitness are rarely evaluated. Here, I compared fragmented populations of the cycad Zamia melanorrhachis from habitats with different history and subject to contrasting levels of disturbance to explore potential demographic differences in populations across habitat patches that could differ in habitat quality. Secondary-forest fragments had a lower canopy cover and soil moisture than remnant-forest fragments, which may represent a harsh environment for this cycad. A smaller average plant size and lower population density in the secondary-forest fragments support the hypothesis that these fragments may be of lower quality, e.g., if plants have reduced survival and/or fecundity in these habitats. However, variation in the stage-structure of populations (i.e., the relative proportions of non-reproductive and reproductive plants) was associated with the area of the forest fragments rather than the type of habitat (remnant versus secondary forest). These results suggest that different demographic parameters may respond differently to habitat fragmentation, which may be explained if processes like adult survival and recruitment depend on different characteristics of the habitat, e.g., average light/water availability versus suitable area for plant establishment. This study shows that forest fragments may differ drastically in environmental conditions and can sustain populations that can vary in their demography. Understanding how forest fragments may represent different habitat types is relevant for evaluating population viability in a heterogeneous landscape and for designing conservation programs that account for this heterogeneity.  相似文献   

2.
Population viability analysis (PVA) models incorporate spatial dynamics in different ways. At one extreme are the occupancy models that are based on the number of occupied populations. The simplest occupancy models ignore the location of populations. At the other extreme are individual-based models, which describe the spatial structure with the location of each individual in the population, or the location of territories or home ranges. In between these are spatially structured metapopulation models that describe the dynamics of each population with structured demographic models and incorporate spatial dynamics by modeling dispersal and temporal correlation among populations. Both dispersal and correlation between each pair of populations depend on the location of the populations, making these models spatially structured. In this article, I describe a method that expands spatially structured metapopulation models by incorporating information about habitat relationships of the species and the characteristics of the landscape in which the metapopulation exists. This method uses a habitat suitability map to determine the spatial structure of the metapopulation, including the number, size, and location of habitat patches in which subpopulations of the metapopulation live. The habitat suitability map can be calculated in a number of different ways, including statistical analyses (such as logistic regression) that find the relationship between the occurrence (or, density) of the species and independent variables which describe its habitat requirements. The habitat suitability map is then used to calculate the spatial structure of the metapopulation, based on species-specific characteristics such as the home range size, dispersal distance, and minimum habitat suitability for reproduction. Received: April 1, 1999 / Accepted: October 29, 1999  相似文献   

3.
AIM: Our objective was to identify the distribution of the endangered golden-cheeked warbler (Setophaga chrysoparia) in fragmented oak-juniper woodlands by applying a geoadditive semiparametric occupancy model to better assist decision-makers in identifying suitable habitat across the species breeding range on which conservation or mitigation activities can be focused and thus prioritize management and conservation planning. LOCATION: Texas, USA. METHODS: We used repeated double-observer detection/non-detection surveys of randomly selected (n = 287) patches of potential habitat to evaluate warbler patch-scale presence across the species breeding range. We used a geoadditive semiparametric occupancy model with remotely sensed habitat metrics (patch size and landscape composition) to predict patch-scale occupancy of golden-cheeked warblers in the fragmented oak-juniper woodlands of central Texas, USA. RESULTS: Our spatially explicit model indicated that golden-cheeked warbler patch occupancy declined from south to north within the breeding range concomitant with reductions in the availability of large habitat patches. We found that 59% of woodland patches, primarily in the northern and central portions of the warbler's range, were predicted to have occupancy probabilities ≤0.10 with only 3% of patches predicted to have occupancy probabilities >0.90. Our model exhibited high prediction accuracy (area under curve = 0.91) when validated using independently collected warbler occurrence data. MAIN CONCLUSIONS: We have identified a distinct spatial occurrence gradient for golden-cheeked warblers as well as a relationship between two measurable landscape characteristics. Because habitat-occupancy relationships were key drivers of our model, our results can be used to identify potential areas where conservation actions supporting habitat mitigation can occur and identify areas where conservation of future potential habitat is possible. Additionally, our results can be used to focus resources on maintenance and creation of patches that are more likely to harbour viable local warbler populations.  相似文献   

4.
Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more fragmented ones, including those with relatively low resource availability, because such habitat fragments have an important role to play for specialist species.  相似文献   

5.
《Acta Oecologica》2002,23(5):287-296
Population viability analysis (PVA) and metapopulation theory are valuable tools to model the dynamics of spatially structured populations. In this article we used a spatially realistic population dynamic model to simulate the trajectory of a Proclossiana eunomia metapopulation in a network of habitat patches located in the Belgian Ardenne. Sensitivity analysis was used to evaluate the relative influence of the different parameters on the model output. We simulated habitat loss by removing a percentage of the original habitat, proportionally in each habitat patch. Additionally, we evaluated isolation and fragmentation effects by removing and dividing habitat patches from the network, respectively. The model predicted a slow decline of the metapopulation size and occupancy. Extinction risks predicted by the model were highly sensitive to environmental stochasticity and carrying capacity. For a determined level of habitat destruction, the expected lifetime of the metapopulation was highly dependent on the spatial configuration of the landscape. Moreover, when the proportion of removed habitat is above 40% of the original habitat, the loss of whole patches invariably leads to the strongest reduction in metapopulation viability.  相似文献   

6.
Habitat destruction and land use change are making the world in which natural populations live increasingly fragmented, often leading to local extinctions. Although local populations might undergo extinction, a metapopulation may still be viable as long as patches of suitable habitat are connected by dispersal, so that empty patches can be recolonized. Thus far, metapopulations models have either taken a mean-field approach, or have modeled empirically-based, realistic landscapes. Here we show that an intermediate level of complexity between these two extremes is to consider random landscapes, in which the patches of suitable habitat are randomly arranged in an area (or volume). Using methods borrowed from the mathematics of Random Geometric Graphs and Euclidean Random Matrices, we derive a simple, analytic criterion for the persistence of the metapopulation in random fragmented landscapes. Our results show how the density of patches, the variability in their value, the shape of the dispersal kernel, and the dimensionality of the landscape all contribute to determining the fate of the metapopulation. Using this framework, we derive sufficient conditions for the population to be spatially localized, such that spatially confined clusters of patches act as a source of dispersal for the whole landscape. Finally, we show that a regular arrangement of the patches is always detrimental for persistence, compared to the random arrangement of the patches. Given the strong parallel between metapopulation models and contact processes, our results are also applicable to models of disease spread on spatial networks.  相似文献   

7.
Many species living in man-shaped landscapes are restricted to small natural habitat patches and form metapopulations; predicting their future is a central issue in applied ecology. We examined the viability of the bog fritillary butterfly Proclossiana eunomia Esper, a specialist glacial relict species, in a highly fragmented landscape (<1% of suitable habitat in 10 km2), by way of population viability analysis. We used comprehensive data from a long-term study in which a patchy population was monitored during ten consecutive years to parameterise a spatially structured metapopulation model using commercially available platform RAMAS/GIS 3.0. Population growth rate was density-dependent and modulated by various climatic variables acting on different developmental stages of the butterfly. Density dependence was probably related to larval parasitism by a specific parasitoid. Population size was negatively affected by an increase in the mean temperature. Dispersal was modelled as the observed proportion of movements between patches, taking into account the probability of emigration out of a given patch. Our model provided results close to the picture of the system drawn from the field data and was considered as useful in making predictions about the metapopulation. Demographic parameters proved to have a far higher impact on metapopulation persistence than dispersal or correlation of local dynamics. Scenarios simulating both global warming and management of habitat patches by rustic herbivore grazing indicated a decrease in the viability of the metapopulation. Our results prompted the regional nature conservation agency to modify the planned management regime. We urge conservation biologists to use structured population models including local population dynamics for viability analysis targeted to such threatened metapopulations in highly fragmented landscapes.  相似文献   

8.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

9.
The idea that populations are spatially structured has become a very powerful concept in ecology, raising interest in many research areas. However, despite dispersal being a core component of the concept, it typically does not consider the movement behavior underlying any dispersal. Using individual‐based simulations in continuous space, we explored the emergence of a spatially structured population in landscapes with spatially heterogeneous resource distribution and with organisms following simple area‐concentrated search (ACS); individuals do not, however, perceive or respond to any habitat attributes per se but only to their foraging success. We investigated the effects of different resource clustering pattern in landscapes (single large cluster vs. many small clusters) and different resource density on the spatial structure of populations and movement between resource clusters of individuals. As results, we found that foraging success increased with increasing resource density and decreasing number of resource clusters. In a wide parameter space, the system exhibited attributes of a spatially structured populations with individuals concentrated in areas of high resource density, searching within areas of resources, and “dispersing” in straight line between resource patches. “Emigration” was more likely from patches that were small or of low quality (low resource density), but we observed an interaction effect between these two parameters. With the ACS implemented, individuals tended to move deeper into a resource cluster in scenarios with moderate resource density than in scenarios with high resource density. “Looping” from patches was more likely if patches were large and of high quality. Our simulations demonstrate that spatial structure in populations may emerge if critical resources are heterogeneously distributed and if individuals follow simple movement rules (such as ACS). Neither the perception of habitat nor an explicit decision to emigrate from a patch on the side of acting individuals is necessary for the emergence of such spatial structure.  相似文献   

10.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

11.
The influence of spatial heterogeneity on the population dynamics of a naturally occurring invertebrate host-pathogen system was experimentally investigated. At ten week intervals over a two year period, I quantified the spatial distribution of natural populations of the terrestrial isopod crustacean Porcellio scaber infected with the isopod iridescent virus (IIV). During the seasonally dry periods of summer and early fall in central California, isopod populations were highly aggregated and the degree of patchiness and distance between inhabited patches was greatest. Coincident with increased patchiness and patch spacing was an increase in isopod density within patches. During the wet seasons of winter and spring, isopod population patchiness, inter-patch spacing, and within-patch density was low. Seasonal changes in virus prevalence were negatively correlated with within-patch density, patchiness, and inter-patch spacing. The influence of the spatial distribution of isopods on virus prevalence was also tested in field experiments. The virus was introduced into arrays of artificial habitat patches colonized by isopods in which interpatch distance was varied. The prevalence of resulting infections was monitored at weekly intervals. In addition, dispersal rates between artificial patches and natural patches were quantified and compared. The results showed that isopods in treatments with the smallest inter-patch spacing had the highest virus prevalence, with generally lower prevalence among isopods in more widely spaced patches. The spacing of experimental patches significantly affected virus prevalence, although the experiments did not resolve a clear relationship between patch spacing and virus prevalence. Rates of dispersal between patches decreased with increased patch spacing, and these rates did not differ significantly from dispersal between natural patches. The results suggest that rates of dispersal between isopod subpopulations may be an important component of the infection dynamics in this system. I discuss the consequences of these findings for host-pathogen dynamics in fragmented habitats, and for other ecological interactions in spatially heterogeneous habitats.  相似文献   

12.
Populations of many species are spatially structured in matrilines, and their dynamics may be determined by matriline specific demographic processes. We examined whether the isolation of habitat patches (i.e. interpatch distance) affected the demography of matrilines in 14 experimentally fragmented populations of the root vole. Matrilines inhabiting the most isolated patches decreased in size over the breeding season, while matrilines in less isolated patches increased. The survival rate of adult females was the main factor underlying the variation in growth rates among matrilines. Low survival when patches were isolated seemed to be due to long-distance interpatch movements exposing females to increased predation rate.
The differential success of matrilines in patchy populations with variable interpatch distances acted to decrease the matrilineal diversity at the population level. Furthermore, isolated patches may function as sinks. Thus spatially explicit landscape features may affect both population demography and genetics.  相似文献   

13.
14.
1. Small mammal populations were studied in montane evergreen forests in the Nilgiris, southern India, using live-trapping from January 1994 to September 1996. Two sites were selected, one with a single large forest patch and adjoining plantations, and the other with several small forest patches separated by grassland.
2. Nine species were recorded, of which eight were trapped in the forest patches, two in the grasslands and five in plantations. Rattus rattus was the most abundant species (2–36 individuals ha−1) followed by Suncus montanus (0–11 individuals ha−1). Densities of seven other species recorded were very low.
3. Synchrony in various population variables – density, biomass, mean weight, density of adults and adult females, and proportion of adults, adult females and sub-adults – was examined for Rattus rattus populations in the forest patches and plantations. Density and biomass were studied in seven other species recorded at these sites. Spearman's rank order correlation was used as a measure of synchrony between the population variables.
4. Within-site synchrony was higher than between-site synchrony in population characters. Synchrony was also higher between plots within the unfragmented site than they were between plots in the fragmented site. Relatively high synchrony in proportions of adults, adult females and juveniles in the forest patches implied that breeding is probably influenced by climate and food availability, which are seasonal in this habitat.
5. Given the small patch sizes (≈1–10 ha) and low population sizes, asynchrony is likely to be an outcome of demographic and environmental stochasticity, and low dispersal rates may impede establishment of synchrony.  相似文献   

15.
We examined the literature on the effects of habitat fragmentation and disturbance on howler monkeys (genus Alouatta) to (1) identify different threats that may affect howlers in fragmented landscapes; (2) review specific predictions developed in fragmentation theory and (3) identify the empirical evidence supporting these predictions. Although howlers are known for their ability to persist in both conserved and disturbed conditions, we found evidence that they are negatively affected by high levels of habitat loss, fragmentation and degradation. Patch size appears to be the main factor constraining populations in fragmented habitats, probably because patch size is positively related to food availability, and negatively related to anthropogenic pressures, physiological stress and parasite loads. Patch isolation is not a strong predictor of either patch occupancy or population size in howlers, a result that may be related to the ability of howlers to move among forest patches. Thus, we propose that it is probable that habitat loss has larger consistent negative effects on howler populations than habitat fragmentation per se. In general, food availability decreases with patch size, not only due to habitat loss, but also because the density of big trees, plant species richness and howlers' home range size are lower in smaller patches, where howlers' population densities are commonly higher. However, it is unclear which vegetation attributes have the biggest influence on howler populations. Similarly, our knowledge is still limited concerning the effects of postfragmentation threats (e.g. hunting and logging) on howlers living in forest patches, and how several endogenous threats (e.g. genetic diversity, physiological stress, and parasitism) affect the distribution, population structure and persistence of howlers. More long‐term studies with comparable methods are necessary to quantify some of the patterns discussed in this review, and determine through meta‐analyses whether there are significant inter‐specific differences in species' responses to habitat loss and fragmentation. Am. J. Primatol. 72:1–16, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Animal dispersal and subsequent settlement is a key process in the life history of many organisms, when individuals use demographic and environmental cues to target post-dispersal habitats where fitness will be highest. To investigate the hypothesis that environmental disturbance (habitat fragmentation) may alter these cues, we compared dispersal patterns of 60 red squirrels (Sciurus vulgaris) in three study sites that differ in habitat composition and fragmentation. We determined dispersal distances, pre- and post-dispersal habitat types and survival using a combination of capture–mark–recapture, radio-tracking and genetic parentage assignment. Most (75%) squirrels emigrated from the natal home range with mean dispersal distance of 1,014 ± 925 m (range 51–4,118 m). There were no sex-related differences in dispersal patterns and no differences in average dispersal distance, and the proportion of dispersers did not differ between sites. In one of the sites, dispersers settled in patches where density was lower than in the natal patch. In the least fragmented site, 90% of animals settled in the natal habitat type (habitat cuing) against 44–54% in the more strongly fragmented sites. Overall, more squirrels settled in the natal habitat type than expected based on habitat availability, but this was mainly due to individuals remaining within the natal wood. In the highly fragmented landscape, habitat cuing among emigrants did not occur more frequently than expected. We concluded that increased habitat fragmentation seemed to reduce reliable cues for habitat choice, but that dispersing squirrels settled in patches with lower densities of same-sex animals than at the natal home range or patch, independent of degree of fragmentation.  相似文献   

17.
Hoehn M  Sarre SD  Henle K 《Molecular ecology》2007,16(16):3299-3312
Although habitat loss and fragmentation threaten species throughout the world and are a major threat to biodiversity, it is apparent that some species are at greater risk of extinction in fragmented landscapes than others. Identification of these species and the characteristics that make them sensitive to habitat fragmentation has important implications for conservation management. Here, we present a comparative study of the population genetic structure of two arboreal gecko species (Oedura reticulata and Gehyra variegata) in fragmented and continuous woodlands. The species differ in their level of persistence in remnant vegetation patches (the former exhibiting a higher extinction rate than the latter). Previous demographic and modelling studies of these two species have suggested that their difference in persistence levels may be due, in part, to differences in dispersal abilities with G. variegata expected to have higher dispersal rates than O. reticulata. We tested this hypothesis and genotyped a total of 345 O. reticulata from 12 sites and 353 G. variegata from 13 sites at nine microsatellite loci. We showed that O. reticulata exhibits elevated levels of structure (FST=0.102 vs. 0.044), lower levels of genetic diversity (HE=0.79 vs. 0.88), and fewer misassignments (20% vs. 30%) than similarly fragmented populations of G. variegata, while all these parameters were fairly similar for the two species in the continuous forest populations (FST=0.003 vs. 0.004, HE=0.89 vs. 0.89, misassignments: 58% vs. 53%, respectively). For both species, genetic structure was higher and genetic diversity was lower among fragmented populations than among those in the nature reserves. In addition, assignment tests and spatial autocorrelation revealed that small distances of about 500 m through fragmented landscapes are a barrier to O. reticulata but not for G. variegata. These data support our hypothesis that G. variegata disperse more readily and more frequently than O. reticulata and that dispersal and habitat specialization are critical factors in the persistence of species in habitat remnants.  相似文献   

18.
The stability and long-term survival of animal populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal abilities of species and the landscape structure (i.e. the nature of the landscape matrix and habitat distribution). Here, we investigated the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using six microsatellite markers, we assessed the effects of geographic distance and different matrix types on the extent of genetic differentiation among 24 sampling sites. We found that forest and a river running through the study area both impede inter-patch dispersal. The presence of these two matrix types was positively correlated with the extent of genetic differentiation between sites. In addition, we found a significant positive correlation between pairwise genetic and geographic distances for a subsample of sites which were separated only by arable land or settlements. For the complete data set, this correlation could not be found. This is most probably because the adverse effect of forest and river on gene flow dominates the effect of geographic distance in our limited set of patches. Our analyses clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix “quality” in metapopulation studies.  相似文献   

19.
生境破碎化对动物种群存活的影响   总被引:39,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

20.
The specialized fauna of peat bogs declines strongly both in species numbers and population density and becomes fragmented because of anthropogenic land use changes. We investigated 15 populations of the stenotopic ground beetle species Agonum ericeti in south Sweden to address the question of reduced genetic variability in populations inhabiting smaller habitat patches. Our results reveal a generally low differentiation and a significant positive relationship between habitat size and allelic richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号