首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitin is an abundant polysaccharide used by many organisms for structural rigidity and water repulsion. As such, the insoluble crystalline structure of chitin poses significant challenges for enzymatic degradation. Acidic mammalian chitinase, a processive glycosyl hydrolase, is the primary enzyme involved in the degradation of environmental chitin in mammalian lungs. Mutations to acidic mammalian chitinase have been associated with asthma, and genetic deletion in mice increases morbidity and mortality with age. We initially set out to reverse this phenotype by engineering hyperactive acidic mammalian chitinase variants. Using a screening approach with commercial fluorogenic substrates, we identified mutations with consistent increases in activity. To determine whether the activity increases observed were consistent with more biologically relevant chitin substrates, we developed new assays to quantify chitinase activity with insoluble chitin, and identified a one‐pot fluorogenic assay that is sufficiently sensitive to quantify changes to activity due to the addition or removal of a carbohydrate‐binding domain. We show that the activity increases from our directed evolution screen were lost when insoluble substrates were used. In contrast, naturally occurring gain‐of‐function mutations gave similar results with oligomeric and insoluble substrates. We also show that activity differences between acidic mammalian chitinase and chitotriosidase are reduced with insoluble substrate, suggesting that previously reported activity differences with oligomeric substrates may have been driven by differential substrate specificity. These results highlight the need for assays against physiological substrates when engineering metabolic enzymes, and provide a new one‐pot assay that may prove to be broadly applicable to engineering glycosyl hydrolases.  相似文献   

2.
纤维素酶制备过程中不同底物、菌种的研究   总被引:2,自引:0,他引:2  
比较用两个菌(黑氏木霉Trichoderma reesei RutC-30及其改良菌种)和不同的纤维底物备纤维素酶解效果与酶系构成,研究表明,以玉米秸秆米为底物,发言奶菌种产酶时间比里氏木霉早2天,且改良菌种滤纸酶活要比里氏木霉高,分别为2.39FPIU/mL和1.85FPIU/mL,里木氏霉已实际运用到生产工艺中,如把改良菌种运用至生产工艺必将产生可观的经济效益。  相似文献   

3.
The enzymatic hydrolysis of cellulose to glucose by cellulases is one of the major steps involved in the conversion of lignocellulosic biomass to yield biofuel. This hydrolysis by cellulases, a heterogeneous reaction, currently suffers from some major limitations, most importantly a dramatic rate slowdown at high degrees of conversion. To render the process economically viable, increases in hydrolysis rates and yields are necessary and require improvement both in enzymes (via protein engineering) and processing, i.e. optimization of reaction conditions, reactor design, enzyme and substrate cocktail compositions, enzyme recycling and recovery strategies. Advances in both areas in turn strongly depend on the progress in the accurate quantification of substrate–enzyme interactions and causes for the rate slowdown. The past five years have seen a significant increase in the number of studies on the kinetics of the enzymatic hydrolysis of cellulose. This review provides an overview of the models published thus far, classifies and tabulates these models, and presents an analysis of their basic assumptions. While the exact mechanism of cellulases on lignocellulosic biomass is not completely understood yet, models in the literature have elucidated various factors affecting the enzymatic rates and activities. Different assumptions regarding rate-limiting factors and basic substrate–enzyme interactions were employed to develop and validate these models. However, the models need to be further tested against additional experimental data to validate or disprove any underlying hypothesis. It should also provide better insight on additional parameters required in the case that more substrate and enzyme properties are to be included in a model.  相似文献   

4.
A progress-curve kinetic method was developed to investigate the interaction between human leukocyte elastase and macromolecular substrates, such as insoluble elastin and soluble plasma proteins. A fluorogenic, synthetic peptide (reporter substrate) was incubated in the presence of finely powdered elastin and enzyme under continuous stirring. The progress curves, which corresponded to the release of product from the reporter substrate, were very sensitive to the presence of various amounts of the macromolecular substrate. The kinetic parameters for the interaction between elastase and elastin were calculated using a pre-steady-state approach characteristic of slow-binding inhibitors. The interaction of elastase with the soluble protein substrates was studied with similar techniques, but formally treating the substrates as classical, fully competitive inhibitors. The adsorption of elastase on insoluble elastin was a time-dependent process consisting of at least three observable phases: The first step was a rapid formation of an encounter complex followed by a very slow step lasting several minutes, and the third step consisted of a steady-state release of products. On the contrary, elastase very rapidly formed productive complexes with bovine serum albumin and a human monoclonal immunoglobulin G. The progress-curve method was also suitable for analyzing the behavior of inhibitors in the presence of protein substrates. The kinetic parameters which characterize the interaction between elastase and protein substrates represent a practical tool to formulate hypotheses on the efficiency of inhibitors in vivo.  相似文献   

5.
Insoluble laminaran, a (1→3)-β-D-glucan from Laminaria hyperborea (L. cloustoni), has been fractionated by differential solubility into soluble and insoluble fractions. These fractions were degraded with a purified exo-(1→3)-β-D-glucanase from Basidiomycete sp. QM806 giving, as primary hydrolysis products, D-glucose, gentiobiose, laminarabiose, and 1-O-β-laminarabiosylmannitol. Gentiobiose was obtained in only trace amounts from the insoluble fraction of laminaran, suggesting the absence of branching. Successive application of periodate oxidation, reduction, mild acid hydrolysis, and enzymic degradation indicated that the branch in the soluble fraction consists of a single β-(1→6)-linked D-glucosyl residue. The results indicate that “insoluble” laminaran is apparently an aggregate of three closely related polysaccharide species: a soluble, branched, reducing component (soluble laminarose); an insoluble, unbranched, reducing component (insoluble laminarose); and an unbranched, nonreducing component (laminaritol) that has a monosubstituted mannitol residue at the reducing terminal. Laminaritol was found to be about equally distributed between the soluble and insoluble fractions. The average d.p. of the laminaran components is 20–25 residues, as determined from the relative amounts of enzymic hydrolysis products and from periodate-oxidation data.  相似文献   

6.
A water-insoluble urokinase (ins-UK) was prepared by covalent coupling to an electrostatically neutral polyacrylamide derivative. The esteratic activity retained by the bound enzyme is about 70 percent of that of the soluble urokinase (UK). Comparative kinetic studies of these two forms of the enzyme were undertaken on lysine esters: N-alpha-acetyl-L-lysine-methyl ester (ALEe) and N-alpha acetylglycyl-L-lysine methyl ester (AGLMe). It was first observed that these substrates both exhibit a marked inhibitory effect toward soluble UK, whereas this phenomenon was less manifest with the insoluble form of the enzyme. Michaelis constants and maximal velocities measured at 33 degrees C, for UK and ins-UK, were identical when ALMe was used, but slightly different with AGLMe. Determination of initial velocities, at a series of pH values shows only minimal differences in the behavior of the soluble enzyme with respect to that of the insoluble form. However, over a range of temperatures, differing Km values for these two enzyme forms were obtained using AGLMe as the substrate. These last results suggest possible interactions between the substrate and the insoluble carrier of the enzyme.  相似文献   

7.
Cellulosic substrates were tested for their ability to bind the cellulases of Thermomonospora curvata . Protein-extracted lucerne fibres had the highest adsorptive capacity while native cotton fibres had the least. Analysis of binding as a Langmuir adsorption isotherm yielded maximal binding capacities of 0.012 filter paper units and 0.51 endoglucanase units/mg lucerne fibre at enzyme saturation. This capacity was increased about 12-fold by fibre pre-treatment in hot NaOH solution.  相似文献   

8.
9.
Carbon metabolism in erythrocytes has been found to be in balance with a variety of substrates studied. The contribution of the 2,3-bisphosphoglycerate pathway to carbon metabolism depends on the rates of carbon utilization and increases with increasing metabolic rates. Net decrease of the 2,3-bisphosphoglycerate level acts as a NAD regenerating system thus facilitating uptake of polyalcohols such as xylitol.  相似文献   

10.
Activity of soluble and immobilized hesperidinase on insoluble hesperidin   总被引:1,自引:0,他引:1  
Summary A michaelian kinetic behaviour was found when the -ramnosidase activity, both of native and immobilized hesperidinase, was determined on hesperidin suspensions. In spite of the low hesperidin solubility in the reaction medium, the maximum rates overtook the expected values, thus pointing to the enzyme ability to degrade insoluble hesperidin.  相似文献   

11.
12.
13.
14.
Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quais-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180°C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance.  相似文献   

15.
Summary A solid state fermentation process was developed for the conversion of straw and cellulose under anaerobic conditions by a mixed culture of cellulolytic and methanogenic organisms. The bioconversion rate and efficiency were compared under mesophilic (35° C) and thermophilic (55° C) conditions. Cellulolytic activity was assayed in terms of sugar and overall soluble organic matter (chemical oxygen demand, COD) production. Maximum conversion rates were obtained under thermophilic conditions, i.e. 8.4 g and 14.2 g COD/kg·d, respectively, when wheat straw and cellulose were used as substrates. The cellulolytic activity of the reactor contents (23% dry matter), measured under substrate excess conditions, amounted to 50 g COD/kg·d. As a comparison, the activity of rumen contents (15% dry matter) measured by the same assay amounted to 150 g COD/kg·d. The anaerobic cellulases appeared to be substrate bound. This and the relative low activity levels attained, limit the perspectives of producing cellulase enzymes by this type of process.  相似文献   

16.
Cellulase reaction mechanism was investigated with the use of following pure cellulosic substrates: Microcrystalline cellulose (Avicel), α‐cellulose (Sigma), filter paper, cotton, and non‐crystalline cellulose (NCC). NCC is amorphous cellulose prepared in our laboratory by treatment with concentrated sulfuric acid. When hydrolyzed with cellulase, NCC produces significant amount of cello‐oligosaccharides (COS) as reaction intermediates along with glucose and cellobiose. The COS produced by cellulase were categorized into two different moieties based upon their degree of polymerization (DP): low DP (less than 7) COS (LD‐COS) and high DP COS (HD‐COS). Endo‐glucanase (Endo‐G) reacts rapidly on the NCC reducing its DP to 30–60, after which the Endo‐G reaction with NCC ceases. HD‐COS is produced from NCC by the action of Endo‐G, whereas LD‐COS is produced by exo‐glucanase (Exo‐G). β‐Glucosidase (β‐G) hydrolyzes LD‐COS to produce cellobiose, but it does not hydrolyze HD‐COS. DP of NCC affects the action of Exo‐G in such a way that the overall yield is high for high DP NCC. This is in line with previous findings that substrate‐recognition by Exo‐G requires binding on β‐glucan chain with DP of 10 for the hydrolysis to take place. The individual cellulose chain residues within solid having DP less than 10 therefore remain unreacted. The percentage of the unreacted portion would be lower for high DP NCC, which results high overall conversion. The surface area and the number of reactive sites on the substrate facilitate adsorption of enzyme therefore the initial rate of the hydrolysis. The overall extent of conversion of cellulose, however, is controlled primarily by its inherent characteristics such as DP and crystallinity. Biotechnol. Bioeng. 2009;102: 1570–1581. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
Sorption of Talaromyces emersonii cellulase on cellulosic substrates   总被引:1,自引:0,他引:1  
The sorption characteristics of the cellulase system of Talaromyces emersonii on various cellulosic substrates were examined. Analysis of reaction mixture supernatants by electrophoresis and enzyme assay showed that all components of the cellulase system were rapidly adsorbed by cellulose and then gradually returned to the liquid phase as the hydrolysis of the substrate progressed. The extent of adsorption in the rapid phase was influenced by pH, temperature, the nature of the substrate, and its concentration.  相似文献   

18.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

19.
The liposome-bound cellulase was prepared by covalently coupling cellulase with the enzyme-free liposomes bearing aldehyde groups so that cellulase was located solely on the outer membrane of liposomes. The modified cellulase possessed the higher activity efficiency and lipid-based specific activity than the cellulase-containing liposomes reported previously. The enzyme-free liposomes bearing aldehyde groups were covalently immobilized with the chitosan gel beads and the free cellulase was coupled with the treated gel beads to prepare the immobilized liposome-bound cellulase. The activity efficiency of the immobilized liposome-bound cellulase was much higher than that of the conventionally immobilized cellulase. The results on reusability of the immobilized liposome-bound cellulase in the hydrolysis of either soluble or insoluble cellulose showed that the immobilized liposome-bound cellulase had the higher remaining cellulase activity and reusability than the conventionally immobilized cellulase for the hydrolysis of either type of cellulose. The liposomal membrane was suggested to be efficient in maintaining the cellulase activity during the hydrolysis.  相似文献   

20.
The action of enzymes on soluble and insoluble substrate biopolymers is discussed, taking into account enzyme diffusion along the biopolymer “surface” and interaction with interspersed ligand groups that may be modified by the action of the enzyme. It is shown that movement of the enzyme under trhe combined effect of these two processes can be described as a diffusion process characterized by an apparent diffusion coefficient that generally depends on both time and position. Equations describing the system are formulated and some specific examples analyzed in terms of analytical or numerical solutions. The concentration distributions of both the enzyme and the substrate (or product ) were obtained for different systems for which the apparent diffusion coefficient is a function of time only, as well as of both time and position. The relevance of the formulation, as developed, to systems in which reduction in dimensionality leads to enhanced enzyme efficiency is discussed, and possible uses of the theory in studies of biopolymer structure and enzyme-biopolymer interactions are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号