首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We tested the hypothesis that stress responses mediated by the Nrf2-antioxidant responsive element (ARE) pathway are involved in the initiation of retinal neuroprotection provided by bright-cyclic-light rearing. Albino rats born and raised in dim (5 lux) or bright (400 lux) cyclic light were exposed to damaging light (3000 lux, 6 h). After exposure, the outer nuclear layer thickness and area and the electroretinogram a- and b-wave amplitudes were significantly reduced in the dim-light-reared rats compared to the bright-light-reared rats, demonstrating a light adaptation neuroprotection phenomenon. In bright-cyclic-light-reared rats, the retinal levels of thioredoxin (Trx) (2.4-fold), Trx reductase (TrxR) (2.9-fold), and proteins modified by 4-hydroxynonenal (4-HNE) (1.5-fold) were upregulated by Western blot analyses, and the nuclear translocation of Nrf2 (2.2-fold) and the DNA binding activity of Nrf2, small Maf, and cJun to the ARE were increased as determined by electrophoretic mobility shift assays. In mouse photoreceptor-derived 661W cells, pretreatment with a sublethal dose of 4-HNE protected against H2O2-induced cell damage. Treatment with 4-HNE upregulated cellular Trx, TrxR, and heme oxygenase-1 (HO-1) levels in addition to DNA binding activity of Nrf2, small Maf, and cJun to the ARE. Downregulation of Nrf2 using RNA interference technology diminished 4-HNE-mediated upregulation of Trx and Trx reductase but did not affect the upregulation of HO-1 by 4-HNE. Cytoprotection by 4-HNE pretreatment against H2O2-induced cell damage was not observed in 661W cells with a silenced Nrf2 gene. The results suggest that upregulation of the Trx system by 4-HNE via the Nrf2–ARE pathway may be involved in the molecular mechanism of the retinal neuroprotection phenomenon.  相似文献   

3.
Amyloid β peptides (Aβ) have been implicated in the pathogenesis of age-related macular degeneration (ARMD) and glaucoma. In this study, retinas of mice overexpressing Aβ (Tg) were compared to those of wild-type mice (Wt) and analyzed for oxidative stress parameters. We observed a progressive decrease in all retinal cell layers, which was significantly greater in Tg mice at 14 months and culminated in loss of the outer retina at 18 months of age. We also observed higher levels of reactive oxygen species, glial fibrillary acidic protein, and hydroperoxide in Tg versus Wt mice (14 months). These effects were associated with phosphorylation/activation of the apoptosis signal kinase 1 and the p38 mitogen-activated kinase. Western blotting analysis revealed progressive increases in the levels of thioredoxin 1 and thioredoxin inhibitory protein in Tg compared to Wt mice. No changes were observed in the levels of thioredoxin reductase 1 (TrxR1); however, measurements of TrxR1 activity showed a 42.7±8% reduction in Tg mice versus Wt at 14 months of age. Our data suggest that Aβ-mediated retinal neurotoxicity involves impairment of the thioredoxin system and enhanced oxidative stress, potentially implicating this mechanism in the pathogenesis of ARMD and glaucoma.  相似文献   

4.
5.
Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc, which is also controlled by Nrf2, was also induced. The increased cystine import (system xc) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3 mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc system activity.  相似文献   

6.
Thioredoxin (Trx) inhibited tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 activity with an approximate IC50 of 0.3 microM, matrix metalloproteinase (MMP)-2 activity with an approximate IC50 of 2 microM but did not inhibit MMP-9 activity. This differential capacity of Trx to inhibit TIMP and MMP activity resulted in the promotion of MMP-2 and MMP-9 activity in the presence of molar TIMP excess. Inhibition of TIMP and MMP-2 activity by Trx was dependent upon thioredoxin reductase (TrxR), was abolished by Trx catalytic site mutation and did not result from TIMP or MMP-2 degradation. HepG2 hepatocellular carcinoma cells induced to secrete Trx inhibited TIMP activity in the presence of TrxR. SK-N-SH neuroblastoma cells secreted TrxR, which inhibited TIMP and MMP-2 activity in the presence of Trx. Trx stimulated SK-N-SH invasive capacity in vitro in the absence of exogenous TrxR. This study therefore identifies a novel extracellular role for the thioredoxin/thioredoxin reductase redox system in the differential inhibition of TIMP and MMP activity and provides a novel mechanism for altering the TIMP/MMP balance that is of potential relevance to tumor invasion.  相似文献   

7.
8.
Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thioredoxin reductase (TrxR2) is significantly reduced in aging skeletal and cardiac muscle and renormalized after caloric restriction, while the cytosolic isoform remains unchanged. Thioredoxins (mitochondrial Trx2, cytosolic Trx1) are not influenced by caloric restriction. In skeletal and cardiac muscle of young rats, caloric restriction has no effect on the expression of thioredoxins or thioredoxin reductases. Enforced reduction of TrxR2 (small interfering RNA) in myoblasts under exposure to ceramide or TNF-alpha causes a dramatic enhancement of nucleosomal DNA cleavage, caspase 9 activation, and mitochondrial reactive oxygen species release, together with reduced cell viability, while this TrxR2 reduction is without effect in unstimulated myoblasts under basal conditions. Oxidative stress in vitro (H2O2 in C2C12 myoblasts and myotubes) results in different changes: TrxR2, Trx2, and Trx1 are induced without alterations in the cytosolic thioredoxin reductase isoforms. Thus aging is associated with a TrxR2 reduction in skeletal muscle and heart, which enhances susceptibility to apoptotic stimuli but is renormalized after short-term caloric restriction. Exogenous oxidative stress does not result in these age-related changes of TrxR2.  相似文献   

9.
10.
11.
Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.  相似文献   

12.
The cytosolic and mitochondrial thioredoxin reductases (TrxR1 and TrxR2) and thioredoxins (Trx1 and Trx2) are key components of the mammalian thioredoxin system, which is important for antioxidant defense and redox regulation of cell function. TrxR1 and TrxR2 are selenoproteins generally considered to have comparable properties, but to be functionally separated by their different compartments. To compare their properties we expressed recombinant human TrxR1 and TrxR2 and determined their substrate specificities and inhibition by metal compounds. TrxR2 preferred its endogenous substrate Trx2 over Trx1, whereas TrxR1 efficiently reduced both Trx1 and Trx2. TrxR2 displayed strikingly lower activity with dithionitrobenzoic acid (DTNB), lipoamide, and the quinone substrate juglone compared to TrxR1, and TrxR2 could not reduce lipoic acid. However, Sec-deficient two-amino-acid-truncated TrxR2 was almost as efficient as full-length TrxR2 in the reduction of DTNB. We found that the gold(I) compound auranofin efficiently inhibited both full-length TrxR1 and TrxR2 and truncated TrxR2. In contrast, some newly synthesized gold(I) compounds and cisplatin inhibited only full-length TrxR1 or TrxR2 and not truncated TrxR2. Surprisingly, one gold(I) compound, [Au(d2pype)(2)]Cl, was a better inhibitor of TrxR1, whereas another, [(iPr(2)Im)(2)Au]Cl, mainly inhibited TrxR2. These compounds also inhibited TrxR activity in the cytoplasm and mitochondria of cells, but their cytotoxicity was not always dependent on the proapoptotic proteins Bax and Bak. In conclusion, this study reveals significant differences between human TrxR1 and TrxR2 in substrate specificity and metal compound inhibition in vitro and in cells, which may be exploited for development of specific TrxR1- or TrxR2-targeting drugs.  相似文献   

13.

Aims

It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration.

Main methods

Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21.

Key findings

Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P < 0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice.

Significance

Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model.  相似文献   

14.
The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP+ and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx–TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions.  相似文献   

15.
目的:根据TMT技术筛选少弱精子症患者精子差异蛋白的结果,选取硫氧还蛋白2(thioredoxin 2,Trx 2)、硫氧还蛋白还原酶1(thioredoxin reductase 1,TrxR 1)进行验证,探讨二者在少精、弱精和少弱精子症中的表达变化及其意义。方法:收集105例少精子症组(O组)、150例弱精子症组(A组)、50例少弱精子症组(OA组)和106例正常精液男性(N组)精液,分离出精子,对少弱精子症进行串联质谱标签(Tandem Mass Tag,TMT)技术蛋白质组学分析,根据少弱精子症组的精子差异蛋白结果选取Trx 2、TrxR 1,通过免疫荧光和免疫印迹方法检测其在O组、A组、OA组的表达情况。结果:TMT技术蛋白质组学结果显示Trx 2为上调差异蛋白(为N组的1.31倍),TrxR 1为下调差异蛋白(为N组的0.82倍)。免疫荧光和免疫印迹结果显示O组、A组、OA组Trx 2表达显著高于N组(P0.05),O组、OA组TrxR 1的表达显著低于N组(P0.05)。二者在OA组的结果与蛋白质组学结果一致。结论:Trx 2、TrxR 1可能在少精、弱精及少弱精子症的发生中起着重要的作用,并有望成为少弱精子症患者精子的候选标志物及治疗靶点。  相似文献   

16.
Mercury toxicity mediated by different forms of mercury is a major health problem; however, the molecular mechanisms underlying toxicity remain elusive. We analyzed the effects of mercuric chloride (HgCl(2)) and monomethylmercury (MeHg) on the proteins of the mammalian thioredoxin system, thioredoxin reductase (TrxR) and thioredoxin (Trx), and of the glutaredoxin system, glutathione reductase (GR) and glutaredoxin (Grx). HgCl(2) and MeHg inhibited recombinant rat TrxR with IC(50) values of 7.2 and 19.7 nm, respectively. Fully reduced human Trx1 bound mercury and lost all five free thiols and activity after incubation with HgCl(2) or MeHg, but only HgCl(2) generated dimers. Mass spectra analysis demonstrated binding of 2.5 mol of Hg(2+) and 5 mol of MeHg(+)/mol of Trx1 with the very strong Hg(2+) complexes involving active site and structural disulfides. Inhibition of both TrxR and Trx activity was observed in HeLa and HEK 293 cells treated with HgCl(2) or MeHg. GR was inhibited by HgCl(2) and MeHg in vitro, but no decrease in GR activity was detected in cell extracts treated with mercurials. Human Grx1 showed similar reactivity as Trx1 with both mercurial compounds, with the loss of all free thiols and Grx dimerization in the presence of HgCl(2), but no inhibition of Grx activity was observed in lysates of HeLa cells exposed to mercury. Overall, mercury inhibition was selective toward the thioredoxin system. In particular, the remarkable potency of the mercury compounds to bind to the selenol-thiol in the active site of TrxR should be a major molecular mechanism of mercury toxicity.  相似文献   

17.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

18.
Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.  相似文献   

19.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

20.
The antioxidant mechanism of ebselen involves recently discovered reductions by mammalian thioredoxin reductase (TrxR) and thioredoxin (Trx) forming ebselen selenol. Here we describe a previously unknown reaction; ebselen reacts with its selenol forming an ebselen diselenide with a rate constant of 372 m(-1)s(-1). The diselenide also was a substrate of TrxR forming the selenol with K(m) of 40 microm and k(cat) of 79 min(-1) (k(cat)/K(m) of 3.3 x 10(4) m(-1)s(-1)). Trx increased the reduction because of its fast reaction with diselenide (rate constant 1.7 x 10(3) m(-1)s(-1)). Diselenide stimulated the H2O2 reductase activity of TrxR, even more efficiently with Trx present. Because the mechanism of ebselen as an antioxidant has been assumed to involve glutathione peroxidase-like activity, we compared the H2O2 reductase activity of ebselen with the GSH and Trx systems. TrxR at 50 nm, far below the estimated physiological level, gave 8-fold higher activity compared with 1 mm GSH; addition of 5 microm Trx increased this difference to 13-fold. The rate constant of ebselen selenol reacting with H2O2 was estimated to be faster than 350 m(-1)s(-1). We propose novel mechanisms for ebselen antioxidant action involving ebselen selenol and diselenide formation, with the thioredoxin system rather than glutathione as the predominant effector and target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号