首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Snm secretion system is a crucial virulence determinant of Mycobacterium tuberculosis. Genes encoding all known components of this alternative secretion pathway are clustered at the same genetic locus, known as RD1. Here, we show that a mutant M. tuberculosis strain containing a transposon insertion in the Rv3615c gene, which is situated outside the RD1 locus, results in loss of Snm secretion. Complementation analysis revealed that both Rv3615c and the downstream gene Rv3614c are required for Snm secretion. Thus, we have renamed the two genes snm9 and snm10 respectively. The snm9::Tn mutant phenocopies bona fide snm mutants, exhibiting attenuation in mice, macrophage growth defects and failure to suppress cytokine induction. Furthermore, yeast two-hybrid analysis revealed a physical interaction between Snm10 and Snm7 (Rv3882c), suggesting that Snm10 may function in complex with other Snm proteins during secretion. Thus, snm9 and snm10 are the first genes located outside the RD1 locus identified as critical components of Snm secretion. These data indicate that Snm secretion consists of an elaborate network of interactions that likely arose from multiple duplication events during the evolution of M. tuberculosis.  相似文献   

3.
Y Zhang  K B Rowley    S S Patil 《Journal of bacteriology》1993,175(20):6451-6458
Phaseolotoxin [N delta(N'-sulfo-diaminophosphinyl)-ornithyl-alanyl- homoarginine] produced by Pseudomonas syringae pv. phaseolicola, the bean halo blight pathogen, is a potent inhibitor of ornithine carbamoyltransferase (OCT). Inhibition of OCT in infected plants leads to chlorosis and growth inhibition. A genomic cosmid clone, pHK120, containing a 25-kb fragment of DNA from a wild-type strain of P. syringae pv. phaseolicola restores toxin production in Tox- mutants. Tn5 mutagenesis of pHK120 and marker exchange of pHK120::Tn5 plasmids in the wild-type strain resulted in the isolation of 39 chromosomal mutants that harbor Tn5 insertions at known positions. Toxin bioassays revealed that 28 of the mutants, with Tn5 insertions distributed throughout the insert of pHK120, were Tox-, indicating that a functional locus for toxin production in each mutant was inactivated. Complementation analysis was done by testing for toxin production strains that carried a genomic Tn5 at one location and a plasmid-borne Tn5 at another location (pair complementation). Pair complementation analysis of nine marker exchange mutants and a random genomic Tn5 mutant revealed that there are a minimum of eight toxin loci (phtA through phtH) in pHK120. Mutants carrying Tn5 insertions in the phtA, phtD, and phtF loci were complemented by deletion subclones containing fragments from pHK120; mutants carrying Tn5 insertions in the phtC locus were partially complemented by a subclone, and mutants carrying Tn5 insertions in the phtB, phtE, phtG, and phtH loci were not complemented by any of the available subclones. A comparison of the insert from pHK120 with that from pRCP17, a clone reported previously (R. C. Peet, P. B. Lindgren, D. K. Wills, and N. J. Panopoulos, J. Bacteriol. 166:1096-1105, 1986) by another laboratory to contain some of the phaseolotoxin genes and the phaseolotoxin-resistant OCT gene, revealed that the inserts in these two cosmids overlap but differ in important respects.  相似文献   

4.
5.
浑球红细菌谷氨酸合酶基因(glt)的克隆和图谱分析   总被引:4,自引:1,他引:4  
利用转座子Tn5随机插入诱变筛选得到12株浑球红细菌(Rhodobacter sphaeroides)氨同化缺陷突变株(Asm~-)。这些突变株胞内均无GOGAT活性,同时它们均无固氮酶活性(Nif~-),并且具有氮代谢多效性缺失表型(Ntr~-)。将含有Azorhizobium sesbaniae ORS571的完整glt基因的质粒pHB10转入突变株中能互补上述表型。通过筛选携带Tn5的R-prime质粒克隆了glt::Tn5片段。Southern杂交证明所克隆glt::Tn5片段与E. coli的gltBD基因有同源性。用此片段与以pLAFR3为载体所构建的R. sphaeroides 601基因文库进行菌落原位杂交筛选到了携带glt基因的cosmid pLT27。pLT27能互补所有12株R.sphaeroides氨同化缺陷突变株。酶切分析表明在该cosmid中插人的染色体DNA片段大小约为26.5kb。以pRK415为载体亚克隆了4.0kb与10.5kh的pLT27的Hindlll酶切片段,分别命名为pLTRK271与pLTRK272。pLTRK272能互补变种GT6、GT10、GT11,pLTRK…  相似文献   

6.
H Poth  P Youngman 《Gene》1988,73(1):215-226
A new cloning system for Bacillus subtilis was devised which makes use of a combination of Tn917-containing phage SP beta derivatives and Tn917-containing Escherichia coli-B. subtilis shuttle plasmids. This system allows the initial cloning of genes in single copy, via 'prophage transformation', with a selection for complementation of mutational defects in B. subtilis hosts and permits subsequent transfer of the cloned material by homologous recombination to low-copy and high-copy vectors that replicate in both B. subtilis and E. coli. Because cloned sequences are adjacent to pB322-derived DNA in the recombinant phages, inserts can also be 'rescued' directly from the phage DNA after digestion with appropriate restriction enzymes, circularization of the fragments by ligation and transformation of an E. coli recipient. Two genomic libraries of B. subtilis chromosomal Sau3A-generated partial-digest fragments in the size ranges of 5-8 kb and 8-10 kb were constructed and screened for the complementation of mutations aroI906, cysA14, dal-1, glyB133, metC3, purA16, purB33, thrA5, trpC2 and recE4. In all cases, specialized transducing phages carrying inserts that complemented the selected markers were recovered. Inserts complementing the dal-1 and trpC2 mutations could be transferred from recombinant phages to Tn917-containing plasmids by homologous recombination without in vitro subcloning. Another insert complementing the purB33 mutation was rescued directly into E. coli from a recombinant phage DNA.  相似文献   

7.
A yeast artificial chromosome (YAC) library was constructed using high-molecular-weight DNA isolated from pepper (Capsicum annuum L.) leaf protoplasts. Insert DNA was prepared by partial digestion using EcoRI and subjected to electrophoretic fractionation before in-gel ligation to the pJS97/98 YAC vector. Prior to transformation of yeast spheroplasts, ligation products were subjected to a second electrophoretic size selection. The library consists of about 19 000 clones with an average insert size of 500 kb, thus representing approximately three haploid genome equivalents. Three PCR-based markers tightly linked to the pepper Bs2 resistance gene were used to assess the utility of this library for positional cloning. Three YAC clones containing pepper genomic DNA from the Bs2 resistance locus were isolated from the library. The clones ranged in size from 270 kb to 1.2 Mb and should prove useful for the cloning of the Bs2 gene. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

8.
9.
Pso2/Snm1 plays a key role in the repair of DNA interstrand cross-links in yeast. Human cells possess three orthologues of Pso2; SNM1A, SNM1B/Apollo and SNM1C/Artemis. Studies using mammalian cells disrupted or depleted for these genes have yielded equivocal evidence that any of these is a true functional homologues of the yeast gene. Here we show that ectopic expression of only one of the three human orthologues, hSNM1A, effectively suppresses the sensitivity of yeast pso2 (snm1) disruptants to cross-linking agents. Two other phenotypes of the pso2 mutants are also partially rescued by ectopic expression of hSNM1A, namely the double-strand repair break defect observed during cross-link processing in pso2 cells, as well as the spontaneous intrachromatid recombination defect of pso2 msh2 double mutants. Finally, we show that recombinant hSNM1A is a 5'-exonuclease, as also recently reported for the yeast Pso2 protein. Together our data suggest that hSnm1A is a functional homologue of yeast Pso2/Snm1.  相似文献   

10.
The yeast SNM1/PSO2 gene specifically functions in DNA interstrand cross-link (ICL) repair, and its role has been suggested to be separate from other DNA repair pathways. In vertebrates, there are three homologs of SNM1 (SNM1A, SNM1B, and SNM1C/Artemis; SNM1 family proteins) whose functions are largely unknown. We disrupted each of the SNM1 family genes in the chicken B-cell line DT40. Both SNM1A- and SNM1B-deficient cells were sensitive to cisplatin but not to X-rays, whereas SNM1C/Artemis-deficient cells exhibited sensitivity to X-rays but not to cisplatin. SNM1A was nonepistatic with XRCC3 (homologous recombination), RAD18 (translesion synthesis), FANCC (Fanconi anemia), and SNM1B in ICL repair. SNM1A protein formed punctate nuclear foci depending on the conserved SNM1 (metallo-beta-lactamase) domain. PIAS1 was found to physically interact with SNM1A, and they colocalized at nuclear foci. Point mutations in the SNM1 domain, which disrupted the interaction with PIAS1, led to mislocalization of SNM1A in the nucleus and loss of complementation of snm1a cells. These results suggest that interaction between SNM1A and PIAS1 is required for ICL repair.  相似文献   

11.
We used haploid yeast cells that express both the MATa and MAT alpha mating-type alleles and contain the spo13-1 mutation to characterize meiotic recombination within single, unpaired chromosomes in Rec+ and Rec- Saccharomyces cerevisiae. In Rec+ haploids, as in diploids, intrachromosomal recombination in the ribosomal DNA was detected in 2 to 6% of meiotic divisions, and most events were unequal reciprocal sister chromatid exchange (SCE). By contrast, intrachromosomal recombination between duplicated copies of the his4 locus occurred in approximately 30% of haploid meiotic divisions, a frequency much higher than that reported in diploids; only about one-half of the events were unequal reciprocal SCE. The spo11-1 mutation, which virtually eliminates meiotic exchange between homologs in diploid meiosis, reduced the frequency of intrachromosomal recombination in both the ribosomal DNA and the his4 duplication during meiosis by 10- to greater than 50-fold. This Rec- mutation affected all forms of recombination within chromosomes: unequal reciprocal SCE, reciprocal intrachromatid exchange, and gene conversion. Intrachromosomal recombination in spo11-1 haploids was restored by transformation with a plasmid containing the wild-type SPO11 gene. Mitotic intrachromosomal recombination frequencies were unaffected by spo11-1. This is the first demonstration of a gene product required for recombination between homologs as well as recombination within chromosomes during meiosis.  相似文献   

12.
13.
用鸟枪法从3株紫云英根瘤菌107菌株的胞外多糖合成缺陷变种(Exo-)NA-05、NA-07和NA-08中克隆获得含有107菌株exo基因及Tn5的exo::Tn5片段。以pRK415为载体构建107菌株EcoRI酶切后DNA片段的部分基因库,用exo::Tn5做探针原位杂交得到一个阳性克隆。该克隆的外源片段4.2kb能恢复3个变种的多糖表型及结瘤固氮能力。酶切分析和Southern杂交表明,3株变种中Tn5插入位点相近。  相似文献   

14.
A nonsense allele of the yeast RAD52 gene, rad52-327, which expresses the N-terminal 65% of the protein was compared to two missense alleles, rad52-1 and rad52-2, and to a deletion allele. While the rad52-1 and the deletion mutants have severe defects in DNA repair, recombination and sporulation, the rad52-327 and rad52-2 mutants retain either partial or complete capabilities in repair and recombination. These two mutants behave similarly in most tests of repair and recombination during mitotic growth. One difference between these two alleles is that a homozygous rad52-2 diploid fails to sporulate, whereas the homozygous rad52-327 diploid sporulates weakly. The low level of sporulation by the rad52-327 diploid is accompanied by a low percentage of spore viability. Among these viable spores the frequency of crossing over for markers along chromosome VII is the same as that found in wild-type spores. rad52-327 complements rad52-2 for repair and sporulation. Weaker intragenic complementation occurs between rad52-327 and rad52-1.  相似文献   

15.
Physical characterization of katG, encoding catalase HPI of Escherichia coli   总被引:15,自引:0,他引:15  
B L Triggs-Raine  P C Loewen 《Gene》1987,52(2-3):121-128
The gene encoding the bifunctional catalase-peroxidase HPI from Escherichia coli was located on a 3.8-kb HindIII fragment of the Clarke and Carbon plasmid pLC36-19 using transposon Tn5 insertions. This fragment was subcloned into the HindIII site of pAT153 to create pBT22. The size of the insert was reduced by BAL 31 digestion of one end to an apparent minimum size for catalase expression of approx. 2.5 kb as determined by complementation and expression in maxicell strains. Further reduction in size or digestion from the opposite end inactivated the gene. The location and orientation of the promoter at the 0 kb end of the insert in pBT22 was confirmed by cloning a 320-bp BglII fragment into the promoter-cloning vector pKK232-8. Differences in the Southern blots of genomic DNA from a wild-type strain and a katG17::Tn10 mutant digested with HincII and probed with pBT22 confirmed that the transposon previously mapped in katG was located in the 2.5-kb coding region for HPI.  相似文献   

16.
Summary The arg-7 locus is the structural gene for the argininosuccinate lyase (ASL). Interallelic complementation was previously found to occur between several mutants of the locus: this is indicative for the homomultimeric nature of ASL.Two complementing (arg-7-5 and arg-7-7) and two non-complementing (arg-7-1 and arg-7-6) mutants of the arg-7 locus were crossed to the pab-2 strain (which is wild-type for the arg-7 locus). In each cross, heterozygote phenotypically wild-type strains were isolated; their diploid pattern was demonstrated by various criteria: mating type, cell volume, nuclear size.The four heterozygotes were compared to the haploid wild-type and in some experiments, to the diploid strain arg-1xpab-2 homozygous for the arg-7 locus. No difference was found in growth rate and in the Michaelis constant values for ASL. The specific activity of the enzyme produced in the heterozygotes was about 50 percent of the activity found in haploid or diploid wild-type. The heat sensitivity of ASL was also investigated in the different strains: two (containing the complementing mutations arg-7-5 and arg-7-7) of the four heterozygotes produce ASL varieties different from the wild-type enzyme as far as the thermolability is concerned.These results suggest that hybrid ASL can be formed by interaction between the products of wild-type and mutant genes. A clear dominance of the wild-type allele is expected only when the mutant allele has no product of the gene: this could be the case for arg-7-1 and arg-7-6.  相似文献   

17.
18.
BACKGROUND: The delivery of a complete genomic DNA locus in vivo may prove advantageous for complementation gene therapy, especially when physiological regulation of gene expression is desirable. Hydrodynamic tail vein injection has been shown to be a highly efficient means of non-viral delivery of plasmid DNA to the liver. Here, we apply hydrodynamic tail vein injection to deliver and express large genomic DNA inserts > 100 kb in vivo. METHODS: Firstly, a size series (12-172 kb) of bacterial artificial chromosome (BAC) plasmids, carrying human genomic DNA inserts, episomal retention elements, and the enhanced green fluorescent protein (EGFP) reporter gene, was delivered to mice by hydrodynamic tail vein injection. Secondly, an episomal BAC vector carrying the whole genomic DNA locus of the human low-density lipoprotein receptor (LDLR) gene, and an expression cassette for the LacZ reporter gene, was delivered by the same method. RESULTS: We show that the efficiency of delivery is independent of vector size, when an equal number of plasmid molecules are used. We also show, by LacZ reporter gene analysis, that BAC delivery within the liver is widespread. Finally, BAC-end PCR, RT-PCR and immunohistochemistry demonstrate plasmid retention and long-term expression (4 months) of human LDLR in transfected hepatocytes. CONCLUSION: This is the first demonstration of somatic delivery and long-term expression of a genomic DNA transgene > 100 kb in vivo and shows that hydrodynamic tail vein injection can be used to deliver and express large genomic DNA transgenes in the liver.  相似文献   

19.
Four restriction endonucleases, AseI (5'-ATTAAT), SpeI (5'-ACTAGT), DraI (5'-TTTAAA), and SnaBI (5'-TACGTA), generated DNA fragments of suitable size distributions for mapping the genome of Rhodobacter sphaeroides by transverse alternating field electrophoresis. AseI produced 17 fragments, ranging in size from 3 to 1,105 kilobases (kb), SpeI yielded 16 fragments (12 to 1,645 kb), DraI yielded at least 25 fragments (6 to 800 kb), and SnaBI generated 10 fragments (12 to 1,225 kb). A total genome size of approximately 4,400 +/- 112 kb was determined by summing the fragment lengths in each of the digests generated by using the different restriction endonucleases. The total genomic DNA consisted of chromosomal DNA (3,960 +/- 112 kb) and the five endogenous plasmids (approximately 450 kb total) whose cognate DNA fragments have been unambiguously identified. A number of genes have been physically mapped to the AseI-generated restriction endonuclease fragments of total genomic DNA by Southern hybridization analysis with either homologous or heterologous specific gene probes or, in the case of several auxotrophic and pigment-biosynthetic mutants apparently generated by Tn5, a Tn5-specific probe. Other genes have been mapped by a comparison with wild-type patterns of the electrophoretic banding patterns of the AseI-digested genomic DNA derived from mutants generated by the insertion of either kanamycin or spectinomycin-streptomycin resistance cartridges. The relative orientations, distance, and location of the pufBALMX, puhA, cycA, and pucBA operons have also been determined, as have been the relative orientations between prkB and hemT and between prkA and the fbc operon.  相似文献   

20.
We have used a reverse genetics approach to isolate genes encoding two subunits of Drosophila melanogaster RNA polymerase II. RpII18 encodes the 18-kDa subunit and maps cytogenetically to polytene band region 83A. RpII140 encodes the 140-kDa subunit and maps to polytene band region 88A10:B1,2. Focusing on RpII140, we used in situ hybridization to map this gene to a small subinterval defined by the endpoints of a series of deficiencies impinging on the 88A/B region and showed that it does not represent a previously known genetic locus. Two recently defined complementation groups, A5 and Z6, reside in the same subinterval and thus were candidates for the RpII140 locus. Phenotypes of A5 mutants suggested that they affect RNA polymerase II, in that the lethal phase and the interaction with developmental loci such as Ubx resemble those of mutants in the gene for the largest subunit, RpII215. Indeed, we have achieved complete genetic rescue of representative recessive lethal mutations of A5 with a P-element construct containing a 9.1-kb genomic DNA fragment carrying RpII140. Interestingly, the initial construct also rescued lethal alleles in the neighboring complementation group, Z6, revealing that the 9.1-kb insert carries two genes. Deleting coding region sequences of RpII140, however, yielded a transformation vector that failed to rescue A5 alleles but continued to rescue Z6 alleles. These results strongly support the conclusion that the A5 complementation group is equivalent to the genomic RpII140 locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号