首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular expression of Ab fragments has been efficiently used to inactivate therapeutic targets, oncogene products, and to induce viral resistance in plants. Ab fragments expressed in the appropriate cell compartment may also help to elucidate the functions of a protein of interest. We report in this study the successful targeting of the protein tyrosine kinase Syk in the RBL-2H3 rat basophilic leukemia cell line. We isolated from a phage display library human single-chain variable fragments (scFv) directed against the portion of Syk containing the Src homology 2 domains and the linker region that separates them. Among them, two scFv named G4G11 and G4E4 exhibited the best binding to Syk in vivo in a yeast two-hybrid selection system. Stable transfectants of RBL-2H3 cells expressing cytosolic G4G11 and G4E4 were established. Immunoprecipitation experiments showed that intracellular G4G11 and G4E4 bind to Syk, but do not inhibit the activation of Syk following FcepsilonRI aggregation, suggesting that the scFv do not affect the recruitment of Syk to the receptor. Nevertheless, FcepsilonRI-mediated calcium mobilization and the release of inflammatory mediators are inhibited, and are consistent with a defect in Bruton's tyrosine kinase and phospholipase C-gamma2 tyrosine phosphorylation and activation. Interestingly, FcepsilonRI-induced mitogen-activated protein kinase phosphorylation is not altered, suggesting that intracellular G4G11 and G4E4 do not prevent the coupling of Syk to the Ras pathway, but they selectively inhibit the pathway involving phospholipase C-gamma2 activation.  相似文献   

2.
Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mediated mainly by the Fc receptor family, including IgE receptors. Recently, PMNs were shown to express two IgE receptors (CD23/Fc epsilon RII and galectin-3). In allergic diseases, the dominant role of IgE has been mainly ascribed to its high-affinity receptor, Fc epsilon RI. We have examined the expression of Fc epsilon RI by PMNS: mRNA and cell surface expression of Fc epsilon RI alpha chain was identified on PMNs from asthmatic subjects. Furthermore, preincubation with human IgE Fc fragment blocks completely the binding of anti-Fc epsilon RI alpha chain (mAb15--1) to human PMNS: Conversely, preincubation of PMNs with mAb15--1 inhibits significantly the binding of IgE Fc fragment to PMNs, indicating that IgE bound to the cell surface of PMNs mainly via the Fc epsilon RI. Peripheral blood and bronchoalveolar lavage (BAL) PMNs from asthmatic subjects also express intracellular Fc epsilon RI alpha and beta chain immunoreactivity. Engagement of Fc epsilon RI induces the release of IL-8 by PMNS: Collectively, these observations provide new evidence that PMNs express the Fc epsilon RI and suggest that these cells may play a role in allergic inflammation through an IgE-dependent activation mechanism.  相似文献   

3.
The adapter SLP-76 plays an essential role in Fc epsilon RI signaling, since SLP-76(-/-) bone marrow-derived mast cells (BMMC) fail to degranulate and release interleukin-6 (IL-6) following Fc epsilon RI ligation. To define the role of SLP-76 domains and motifs in Fc epsilon RI signaling, SLP-76(-/-) BMMC were retrovirally transduced with SLP-76 and SLP-76 mutants. The SLP-76 N-terminal and Gads binding domains, but not the SH2 domain, were critical for Fc epsilon RI-mediated degranulation and IL-6 secretion, whereas all three domains are essential for T-cell proliferation following T-cell receptor (TCR) ligation. Unexpectedly, the three tyrosine residues in SLP-76 critical for TCR signaling, Y112, Y128, and Y145, were not essential for IL-6 secretion, but were required for degranulation and mitogen-activated protein kinase activation. Furthermore, a Y112/128F SLP-76 mutant, but not a Y145F mutant, strongly reconstituted mast cell degranulation, suggesting a critical role for Y145 in Fc epsilon RI-mediated exocytosis. These results point to important differences in the function of SLP-76 between T cells and mast cells.  相似文献   

4.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

5.
PCR-amplification cloning of the cDNA encoding the human high-affinity receptor for IgG (Fc gamma RI) revealed two splice variants which coincide with domain boundaries predicted by amino acid sequence comparison. Both splice variants maintain the open reading frame.  相似文献   

6.
The ZAP70/Syk family of protein tyrosine kinases plays an important role in Ag receptor signaling. Structural similarity of Syk and ZAP70 suggests their functional overlap. Previously, it was observed that expression of either ZAP70 or Syk reconstitutes Ag receptor signaling in Syk-negative B cells. However, in CD45-deficient T cells, Syk, but not ZAP70, restores T cell receptor-signaling pathway. To study the function of Syk, ZAP70, and CD45 in mast cells, a Syk/CD45 double-deficient variant of RBL-2H3 cells was characterized. After transfection, stable cell lines were isolated that expressed ZAP70, Syk, CD45, ZAP70 plus CD45, and Syk plus CD45. IgE stimulation did not induce degranulation in parental double-deficient cells, nor in the cells expressing only CD45. ZAP70 expression did not restore Fc epsilon RI signaling unless CD45 was coexpressed in the cells. However, Syk alone restored the IgE signal transduction pathway. The coexpression of CD45 with Syk had no significant effects on the responses to FcepsilonRI-aggregation. There was much better binding of Syk than ZAP70 to the phosphorylated Fc epsilon RI gamma-ITAM. Furthermore, unlike Syk, ZAP70 required CD45 to display receptor-induced increase in kinase activity. Therefore, in mast cells, ZAP70, but not Syk, requires CD45 for Ag receptor-induced signaling.  相似文献   

7.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

8.
The high-affinity IgE receptor Fc epsilon RI is expressed on the cell surface of mast cells and basophils, and plays a central role in IgE-mediated inflammatory reactions. Recently, peroxisome proliferator-activated receptors (PPARs) have been implicated in the anti-inflammatory response. To investigate a possible role for PPAR in human basophils, the effect of PPAR ligands on Fc epsilon RI expression in human basophilic KU812 cells was studied. The PPARalpha ligand, leukotriene B(4), did not affect the cell surface expression of Fc epsilon RI. However, prostaglandin (PG) A(1) and 15-deoxy-Delta(12,14) PGJ(2) (15d-PGJ(2)), which are PPARbeta and gamma ligands, respectively, were both able to decrease Fc epsilon RI expression. Treatment with PGA(1) or 15d-PGJ(2) separately also reduced histamine release from KU812 cells in response to cross-linkage of Fc epsilon RI. In addition, RT-PCR analysis showed that KU812 cells expressed the mRNA for PPARalpha, beta, and gamma, indicating that PPARbeta or gamma may negatively regulate the cell activation via Fc epsilon RI. Cells treated with 15d-PGJ(2) expressed lower levels of Fc epsilon RI alpha and gamma mRNA, and PGA(1) treatment decreased the level of Fc epsilon RI gamma mRNA. These results suggest that the suppression of Fc epsilon RI expression by PPARs may be due to the down-regulation of Fc epsilon RI alpha or gamma mRNA.  相似文献   

9.
S Hemmerich  I Pecht 《Biochemistry》1988,27(19):7488-7498
Derivatives of the antiallergic drug cromolyn [disodium 5,5'-[(2-hydroxy-1,3-propanediyl)-bis(oxy)]bis [4-oxo-(4H-1-benzopyran)-2- carboxylate]], which can be conjugated covalently at the propane 2-position to macromolecules and to insoluble matrices, were synthesized. Conjugates of these derivatives with macromolecules were examined for their binding to cells of the rat basophilic leukemia line RBL-2H3, which is widely employed as a model for immunologically induced mast cell degranulation. Only those drug-protein conjugates in which the cromolyn analogue with an amino group at the propane 2-carbon instead of the hydroxyl was linked to the carrier by glutaraldehyde were found to exhibit specific and saturable binding to these cells. Analysis of the binding data for these conjugates yielded an apparent binding constant of 3.8 +/- 0.2 X 10(8) M-1 and an apparent number of binding sites for the probe of 4000-8000 per cell. The conjugates found to bind specifically to the cells were also immobilized on agarose matrices and employed in an affinity-based isolation of the membrane component responsible for the observed binding. A single labeled polypeptide was eluted from these columns, onto which either whole cell lysates or solubilized purified plasma membranes of surface-radioiodinated RBL-2H3 cells had been adsorbed. This membrane protein appears on autoradiograms of nonreducing SDS-PAGE as a single broad band of approximately 110,000 daltons (Da) apparent molecular mass. On autoradiograms of reducing gels, the only band detected has an apparent mass of approximately 50,000 Da and appears narrower. Elution of the columns with the drug and disulfide-reducing agents or with the latter alone resulted in significantly higher yields of the 50-kDa polypeptide. Both the intact and reduced proteins bind strongly to immobilized concanavalin A and less so to immobilized wheat germ agglutinin, suggesting that the isolated intact protein is probably a dimer of two glycosylated subunits of similar molecular mass. Treatment of the reduced protein with endoglycosidase F leads to a decrease in its apparent molecular mass by approximately 12 kDa, suggesting that the extent of glycosylation of this polypeptide is approximately 25%. As shown in the following paper, the intact protein constitutes a Ca2+ channel that is activated upon IgE-Fc epsilon receptor aggregation.  相似文献   

10.
Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-beta-cyclodextrin (MbetaCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with MbetaCD, and this effect was reversed when cholesterol was added. In an approach to identifying the MbetaCD-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.  相似文献   

11.
FcepsilonRI signaling in rat basophilic leukemia cells depends on phosphatidylinositol 3-kinase (PI3-kinase) and the small GTPase Rac. Here, we studied the functional relationship among PI3-kinase, its effector protein kinase B (PKB), and Rac using inhibitors of PI3-kinase and toxins inhibiting Rac. Wortmannin, an inhibitor of PI3-kinase, blocked FcepsilonRI-mediated tyrosine phosphorylation of phospholipase Cgamma, inositol phosphate formation, calcium mobilization, and secretion of hexosaminidase. Similarly, Clostridium difficile toxin B, which inactivates all Rho GTPases including Rho, Rac and Cdc42, and Clostridium sordellii lethal toxin, which inhibits Rac (possibly Cdc42) but not Rho, blocked these responses. Stimulation of the FcepsilonRI receptor induced a rapid increase in the GTP-bound form of Rac. Whereas toxin B inhibited the Rac activation, PI3-kinase inhibitors (wortmannin and LY294002) had no effect on activation of Rac. In line with this, wortmannin had no effect on tyrosine phosphorylation of the guanine nucleotide exchange factor Vav. Wortmannin, toxin B, and lethal toxin inhibited phosphorylation of PKB on Ser(473). Similarly, translocation of the pleckstrin homology domain of PKB tagged with the green fluorescent protein to the membrane, which was induced by activation of the FcepsilonRI receptor, was blocked by inhibitors of PI3-kinase and Rac inactivation. Our results indicate that in rat basophilic leukemia cells Rac and PI3-kinase regulate PKB and suggest that Rac is functionally located upstream and/or parallel of PI3-kinase/PKB in FcepsilonRI signaling.  相似文献   

12.
We investigated the possible role of tyrosine phosphorylation in the activation process of mast cells by cross-linking of cell-bound IgE antibodies. Bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE antiDNP mAb and then challenged with multivalent Ag DNP conjugates of human serum albumin. Analysis of phosphotyrosine-containing proteins in their lysates by SDS-PAGE and immunoblotting revealed that cross-linking of cell-bound IgE antibodies induced a marked increase in tyrosine phosphorylation of several proteins. To obtain direct evidence for activation of protein-tyrosine kinases (PTK), phosphotyrosine-containing proteins in lysates of mast cells were affinity purified, and kinase activity of the immunoprecipitates was assessed by an in vitro kinase assay. The results clearly showed activation of PTK upon cross-linking of Fc epsilon RI. Activation of PTK was not detected by the same assay when the sensitized BMMC were challenged with monovalent DNP-lysine. Treatment of sensitized BMMC with either Ca2+ ionophore or PMA failed to induce the activation of PTK. A representative IgE-independent secretagogue, thrombin, induced histamine release from BMMC but failed to induce activation of PTK. The results excluded the possibility that PTK activation is the consequence of an increase in intracellular Ca2+ or activation of protein kinase C. Addition of genistein, a PTK inhibitor, to sensitized BMMC before Ag challenge inhibited not only Ag-induced PTK activation, but also inositol 1,4,5-trisphosphate production, and histamine release in a similar dose-response relationship. Other PTK inhibitors, such as lavendustin A and tyrphostin RG50864, also inhibited the Ag-induced activation of PTK and histamine release. The results collectively suggest that activation of PTK is an early event upstream of the activation of phospholipase C, and is involved in transduction of IgE-dependent triggering signals to mediator release.  相似文献   

13.
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells and basophils results in FcepsilonRI beta and gamma subunits ubiquitination by an as yet undefined mechanism. Here we show that, upon FcepsilonRI engagement on RBL-2H3 cells Syk undergoes ubiquitination and Syk kinase activity is required for its own ubiquitination and that of FcepsilonRI beta and gamma chains. This requirement was demonstrated by overexpression of Syk wild-type or its kinase-dead mutant in RBL cells or using an Syk-deficient RBL-derived cell line transfected with wild-type or a kinase inactive form of Syk. We also identify c-Cbl as the E3 ligase responsible for both Syk and receptor ubiquitination. Furthermore, we demonstrate that Syk controls tyrosine phosphorylation of Syk-associated Cbl induced after receptor engagement. These data suggest a mutual regulation between Syk and Cbl activities. Finally, we show that a selective inhibitor of proteasome degradation induces persistence of tyrosine-phosphorylated receptor complexes, of activated Syk, and of FcepsilonRI-triggered degranulation. Our results provide a molecular mechanism for down-regulation of engaged receptor complexes by targeting ubiquitinated FcepsilonRI and activated Syk to the proteasome for degradation.  相似文献   

14.
Conformations of IgE bound to its receptor Fc epsilon RI and in solution.   总被引:2,自引:0,他引:2  
Y Zheng  B Shopes  D Holowka  B Baird 《Biochemistry》1991,30(38):9125-9132
  相似文献   

15.
The binding of IgE to the high affinity Fc epsilon receptor (Fc epsilon RI) on mast cells and basophils is mediated by the alpha-subunit of the tetrameric receptor complex. Based on sequence homologies, the 50-kDa alpha-subunit is a member of the immunoglobulin superfamily of proteins and has two predicted disulfide-bonded loops. Monoclonal antibodies specific for the human alpha-subunit have been identified and separated into two major classes: inhibitory and noninhibitory antibodies. Inhibitory antibodies (i.e. 15A5) block 125I-IgE binding to a recombinant chimeric alpha-subunit (ch-alpha-protein) expressed on Chinese hamster ovary cells and immunoprecipitate 125I-labeled purified ch-alpha-protein. Noninhibitory antibodies (i.e. 22E7) immunoprecipitate both 125I-labeled ch-alpha-protein and the soluble complex of 125I-IgE cross-linked to ch-alpha-protein but do not block 125I-IgE binding to the ch-alpha-protein expressed on Chinese hamster ovary cells. Both classes of antibodies bind to natural Fc epsilon RI present on human basophils and induce histamine release from these cells. Inhibitory antibody 15A5 specifically binds to a peptide corresponding to amino acids 125-140 of the putative second domain of the alpha-subunit sequence. All the inhibitory antibodies compete with 125I-15A5 for binding to the ch-alpha-protein, indicating that these antibodies recognize inhibitory epitopes that are either identical or sterically overlapping. Noninhibitory antibodies (i.e. 22E7) do not block 125I-15A5 binding to the ch-alpha-protein. These data suggest that antibodies binding to the predicted second domain of the alpha-subunit can inhibit IgE binding to the alpha-subunit, while antibodies binding at a distance from this site do not inhibit IgE binding. These inhibitory antibodies may block IgE binding to the ch-alpha-protein by direct overlap, steric inhibition, or induced conformational changes of the receptor contact points for IgE.  相似文献   

16.
17.
The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Individual murine Fc gamma R isoforms were transfected into rat basophilic leukemia cells and after cross-linking the FcR, changes in the phosphorylation of protein tyrosines, in the level of intracellular Ca2+, in the hydrolysis of phosphoinositides, and in the release of arachidonic acid metabolites and hexosaminidase were monitored. Cross-linking of Fc gamma RIII initiated all of these early and late biochemical functions, and although they were quantitatively somewhat smaller, the responses were qualitatively indistinguishable from those stimulated by the endogenous Fc epsilon RI. However, despite ample expression, neither Fc gamma RII-b1 nor Fc gamma RII-b2 stimulated these functions when cross-linked. The functional differences between Fc gamma RII and Fc gamma RIII were studied further by assessing the responses to cross-linking of the endogenous Fc gamma R (Fc gamma RII-b1, Fc gamma RII-b2, and Fc gamma RIII) on P815 mouse mastocytoma cells that had been transfected with normal or functionally defective Fc epsilon RI. Two types of mutant subunits had previously been observed to impair the activity of Fc epsilon RI: gamma-chains missing the cytoplasmic domain, and beta-chains missing the COOH-terminal cytoplasmic domain. In both types of transfectants the functional inhibition of the endogenous Fc gamma R paralleled that of the transfected Fc epsilon RI. These results are consistent with the gamma subunit being associated with the functions of Fc gamma RIII as well as of Fc epsilon RI. The functional results also complement the recently reported evidence that Fc gamma RIII can interact with Fc epsilon RI beta-subunits (J. Exp. Med. 175:447, 1992).  相似文献   

18.
Human basophils respond to Ag-induced cross-linking of their high affinity IgE receptor, FcepsilonRI, by releasing histamine and other mediators from granules, producing IL-4 and other cytokines and, as shown in this study, by forming membrane ruffles and showing increased very late Ag-4 (VLA-4)-mediated adhesion to VCAM-1-expressing target cells. We have identified five blood donors whose basophils lack detectable levels of the FcepsilonRI-associated protein tyrosine kinase, Syk. Despite showing no obvious ultrastructural differences from normal basophils, nonreleaser basophils fail to form membrane ruffles, to show increased VLA-4-mediated adhesive activity, or to produce IL-4 in response to FcepsilonRI cross-linking. Although Syk protein levels are suppressed in basophils from all five donors, Syk mRNA is consistently present. Furthermore, culturing nonreleaser basophils for 4 days with IL-3 restores Syk protein expression and FcepsilonRI-mediated histamine release. Understanding the reversible suppression of Syk protein expression in nonreleaser basophils, and learning to replicate this property in patients with allergic inflammation could be a powerful and specific way to limit symptomatic disease.  相似文献   

19.
J den Hertog  T Hunter 《The EMBO journal》1996,15(12):3016-3027
Receptor protein-tyrosine phosphatase alpha (RPTPalpha), a transmembrane member of the extensive family of protein-tyrosine phosphatases (PTPs), is constitutively phosphorylated on Tyr789, a consensus binding site for the SH2 domain of the SH3-SH2-SH3 adaptor protein GRB2. We have previously shown that GRB2 binds to P.Tyr789 in vivo and in vitro via its SH2 domain. Here, we report that not only the GRB2 SH2 domain, but also the C-terminal SH3 domain is involved in binding to RPTPalpha in vitro and in vivo. Although the N-terminal SH3 domain of GRB2 is essential for binding to the Ras guanine nucleotide exchange factor Son of Sevenless (Sos), an RPTPalpha-GRB2-Sos complex could not be detected. The inclusion of peptides encompassing an hSos1 proline-rich motif in cell lysates resulted in enhanced binding of RPTPalpha to GRB2 in vitro, suggesting that steric hindrance prohibits formation of the RPTPalpha-GRB2-Sos complex. In vitro binding experiments indicated that the binding of GRB2 to Sos/dynamin and RPTPalpha was mutually exclusive. Analysis of in vitro binding kinetics coupled with results from transient co-transfections demonstrated that RPTPalpha is tightly bound to GRB2. The site of interaction of the C-terminal SH3 domain of GRB2 with RPTPalpha was mapped using deletion mutants to an 18-residue region in the N-terminal PTP domain. Arg469, within this region, was identified as one of the residues that is involved in the interaction with the C-terminal SH3 domain of GRB2. RPTPalpha residues 469-486 are localized close to the catalytic site cleft in the structure of the N-terminal PTP-domain, suggesting that interaction with the C-terminal SH3 domain may block access to the catalytic site, thus inhibiting RPTPalpha activity.  相似文献   

20.
The high affinity receptor for IgG (Fc gamma RI, CD64) is expressed on human mast cells, where it is up-regulated by IFN-gamma and, thus, may allow mast cells to be recruited through IgG-dependent mechanisms in IFN-gamma-rich tissue inflammation. However, the mediators produced by human mast cells after aggregation of Fc gamma RI are incompletely described, and it is unknown whether these mediators are distinct from those produced after activation of human mast cells via Fc epsilon RI. Thus, we investigated the release of histamine and arachidonic acid metabolites and examined the chemokine and cytokine mRNA profiles of IFN-gamma-treated cultured human mast cells after Fc gamma RI or Fc epsilon RI aggregation. Aggregation of Fc gamma RI resulted in histamine release and PGD(2) and LTC(4) generation. These responses were qualitatively indistinguishable from responses stimulated via Fc epsilon RI. Aggregation of Fc epsilon RI or Fc gamma RI led to an induction or accumulation of 22 cytokine and chemokine mRNAs. Among them, seven cytokines (TNF-alpha, IL-1beta, IL-5, IL-6, IL-13, IL-1R antagonist, and GM-CSF) were significantly up-regulated via aggregation of Fc gamma RI compared with Fc epsilon RI. TNF-alpha mRNA data were confirmed by quantitative RT-PCR and ELISA. Furthermore, we confirmed histamine and TNF-alpha data using IFN-gamma-treated purified human lung mast cells. Thus, aggregation of Fc gamma RI on mast cells led to up-regulation and/or release of three important classes of mediators: biogenic amines, lipid mediators, and cytokines. Some cytokines, such as TNF-alpha, were released and generated to a greater degree after Fc gamma RI aggregation, suggesting that selected biologic responses of mast cells may be preferentially generated through Fc gamma RI in an IFN-gamma-rich environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号