首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A distinguishing feature of rod arrestin is its ability to form oligomers at physiological concentrations. Using visible light scattering, we show that rod arrestin forms tetramers in a cooperative manner in solution. To investigate the structure of the tetramer, a nitroxide side chain (R1) was introduced at 18 different positions. The effects of R1 on oligomer formation, EPR spectra, and inter-spin distance measurements all show that the structures of the solution and crystal tetramers are different. Inter-subunit distance measurements revealed that only arrestin monomer binds to light-activated phosphorhodopsin, whereas both monomer and tetramer bind microtubules, which may serve as a default arrestin partner in dark-adapted photoreceptors. Thus, the tetramer likely serves as a 'storage' form of arrestin, increasing the arrestin-binding capacity of microtubules while readily dissociating to supply active monomer when it is needed to quench rhodopsin signaling.  相似文献   

2.
We have tested whether arrestin binding requires the G-protein-coupled receptor be a dimer or a multimer. To do this, we encapsulated single-rhodopsin molecules into nanoscale phospholipid particles (so-called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and β-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find that the monomeric rhodopsin in nanodiscs has a higher affinity for wild-type arrestin binding than does oligomeric rhodopsin in liposomes or nanodiscs, as assessed by stabilization of metarhodopsin II. Together, these results establish that rhodopsin self-association is not required to enable arrestin binding.  相似文献   

3.
The oligomeric states of bovine visual arrestin in solution were studied by small-angle x-ray scattering. The Guinier plot of arrestin at the concentration ranging from 0.4 mg/ml to 11.1 mg/ml was approximated with a straight line, and the apparent molecular weight was evaluated by the concentration-normalized intensity at zero angle (I(0)/conc). Using ovalbumin as a molecular weight standard, it was found that arrestin varied from monomer to tetramer depending on the concentration. The I(0)/conc decreased at high-salt concentration, but was independent of temperature. The simulation analysis of the concentration-dependent increase of I(0)/conc demonstrated that the tetramerization is highly cooperative, and arrestin at the physiological concentration is virtually in the equilibrium between monomer and tetramer. The concentration of arrestin monomer, which is considered to be an active form, remains at an almost constant level even if the total concentration of arrestin fluctuates within the physiological range. The scattering profile of arrestin tetramer in solution was in good agreement with that in the crystal, indicating that the quaternary structure in solution is essentially identical to that in crystal. Small-angle x-ray scattering was applied to a binding assay of phosphorylated rhodopsin and arrestin in the detergent system, and we directly observed their association as the increase of I(0)/conc.  相似文献   

4.
The robust cooperative formation of rod arrestin tetramers has been well-established, whereas the ability of other members of the arrestin family to self-associate remains controversial. Here, we used purified arrestins and multi-angle light scattering to quantitatively compare the propensity of the four mammalian arrestin subtypes to self-associate. Both non-visual and cone arrestins only form oligomers at very high non-physiological concentrations. However, inositol hexakisphosphate (IP6), a fairly abundant form of inositol in the cytoplasm, greatly facilitates self-association of arrestin2. Arrestin2 self-association equilibrium constants in the presence of 100 microM IP6 suggest that an appreciable proportion could exist in an oligomeric state but only in intracellular compartments where its concentration is 5-10-fold higher than average. In contrast to arrestin2, IP6 inhibits self-association of rod arrestin, indicating that the structure of these two tetramers in solution is likely different.  相似文献   

5.
Visual arrestin is the protein responsible for rapid quenching of G-protein-coupled receptor signaling. Arrestin exists as a latent inhibitor which must be 'activated' upon contact with a phosphorylated receptor. X-ray crystal structures of visual arrestin exhibit a tetrameric arrangement wherein an asymmetric dimer with an extensive interface between conformationally different subunits is related to a second asymmetric dimer by a local two-fold rotation axis. To test the biological relevance of this molecular organization in solution, we carried out a sedimentation equilibrium analysis of arrestin at both crystallographic and physiological protein concentrations. While the tetrameric form can exist at the high concentrations used in crystallography experiments, we find that arrestin participates in a monomer/dimer equilibrium at concentrations more likely to be physiologically relevant. Solution interaction analysis of a proteolytically modified, constitutively active form of arrestin shows diminished dimerization. We propose that self-association of arrestin may provide a mechanism for regulation of arrestin activity by (i) ensuring an adequate supply for rapid quenching of the visual signal and (ii) limiting the availability of active monomeric species, thereby preventing inappropriate signal termination.  相似文献   

6.
Visual arrestin binds to the phosphorylated carboxy-terminal region of rhodopsin to block interactions with transducin and terminate signaling in the rod photoreceptor cells. A synthetic seven-phospho-peptide from the C-terminal region of rhodopsin, Rh(330-348), has been shown to bind arrestin and mimic inhibition of signal transduction. In this study, we examine conformational changes in this synthetic peptide upon binding to arrestin by high-resolution proton nuclear magnetic resonance (NMR). We show that the peptide is completely disordered in solution, but becomes structured upon binding to arrestin. A control, unphosphorylated peptide that fails to bind to arrestin remains highly disordered. Specific NMR distance constraints are used to model the arrestin-bound conformation. The models suggest that the phosphorylated carboxy-terminal region of rhodopsin, Rh(330-348), undergoes significant conformational changes and becomes structured upon binding to arrestin.  相似文献   

7.
G-protein-coupled receptor signaling is terminated by arrestin proteins that preferentially bind to the activated phosphorylated form of the receptor. Arrestins also bind active unphosphorylated and inactive phosphorylated receptors. Binding to the non-preferred forms of the receptor is important for visual arrestin translocation in rod photoreceptors and the regulation of receptor signaling and trafficking by non-visual arrestins. Given the importance of arrestin interactions with the various functional forms of the receptor, we performed an extensive analysis of the receptor-binding surface of arrestin using site-directed mutagenesis. The data indicated that a large number of surface charges are important for arrestin interaction with all forms of the receptor. Arrestin elements involved in receptor binding are differentially engaged by the various functional forms of the receptor, each requiring a unique subset of arrestin residues in a specific spatial configuration. We identified several additional phosphate-binding elements in the N-domain and demonstrated for the first time that the active receptor preferentially engages the arrestin C-domain. We also found that the interdomain contact surface is important for arrestin interaction with the non-preferred forms of the receptor and that residues in this region play a role in arrestin transition into its high affinity receptor binding state.  相似文献   

8.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.  相似文献   

9.
Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization.  相似文献   

10.
11.
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.  相似文献   

12.
13.
14.
We have determined the structure of wild-type IP-10 from three crystal forms. The crystals provide eight separate models of the IP-10 chain, all differing substantially from a monomeric IP-10 variant examined previously by NMR spectroscopy. In each crystal form, IP-10 chains form conventional beta sheet dimers, which, in turn, form a distinct tetrameric assembly. The M form tetramer is reminiscent of platelet factor 4, whereas the T and H forms feature a novel twelve-stranded beta sheet. Analytical ultracentrifugation indicates that, in free solution, IP-10 exists in a monomer-dimer equilibrium with a dissociation constant of 9 microM. We propose that the tetrameric structures may represent species promoted by the binding of glycosaminoglycans. The binding sites for several IP-10-neutralizing mAbs have also been mapped.  相似文献   

15.
Acetylcholinesterase rapidly hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses, including the neuromuscular junction. The tetramer is the most important functional form of the enzyme. Two low-resolution crystal structures have been solved. One is compact with two of its four peripheral anionic sites (PAS) sterically blocked by complementary subunits. The other is a loose tetramer with all four subunits accessible to solvent. These structures lacked the C-terminal amphipathic t-peptide (WAT domain) that interacts with the proline-rich attachment domain (PRAD). A complete tetramer model (AChEt) was built based on the structure of the PRAD/WAT complex and the compact tetramer. Normal mode analysis suggested that AChEt could exist in several conformations with subunits fluctuating relative to one another. Here, a multiscale simulation involving all-atom molecular dynamics and Cα-based coarse-grained Brownian dynamics simulations was carried out to investigate the large-scale intersubunit dynamics in AChEt. We sampled the ns-μs timescale motions and found that the tetramer indeed constitutes a dynamic assembly of monomers. The intersubunit fluctuation is correlated with the occlusion of the PAS. Such motions of the subunits “gate” ligand-protein association. The gates are open more than 80% of the time on average, which suggests a small reduction in ligand-protein binding. Despite the limitations in the starting model and approximations inherent in coarse graining, these results are consistent with experiments which suggest that binding of a substrate to the PAS is only somewhat hindered by the association of the subunits.  相似文献   

16.
Dissimilatory oxidation of thiosulfate in the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum is carried out by the ubiquitous sulfur-oxidizing (Sox) multi-enzyme system. In this system, SoxY plays a key role, functioning as the sulfur substrate-binding protein that offers its sulfur substrate, which is covalently bound to a conserved C-terminal cysteine, to another oxidizing Sox enzyme. Here, we report the crystal structures of a stand-alone SoxY protein of C. limicola f. thiosulfatophilum, solved at 2.15 A and 2.40 A resolution using X-ray diffraction data collected at 100 K and room temperature, respectively. The structure reveals a monomeric Ig-like protein, with an N-terminal alpha-helix, that oligomerizes into a tetramer via conserved contact regions between the monomers. The tetramer can be described as a dimer of dimers that exhibits one large hydrophobic contact region in each dimer and two small hydrophilic interface patches in the tetramer. At the tetramer interface patch, two conserved redox-active C-terminal cysteines form an intersubunit disulfide bridge. Intriguingly, SoxY exhibits a dimer/tetramer equilibrium that is dependent on the redox state of the cysteines and on the type of sulfur substrate component bound to them. Taken together, the dimer/tetramer equilibrium, the specific interactions between the subunits in the tetramer, and the significant conservation level of the interfaces strongly indicate that these SoxY oligomers are biologically relevant.  相似文献   

17.
We have investigated the molecular mechanisms that produce different structural and functional behavior in the monomeric and trimeric forms of seminal vesicle protein no. 4, a protein with immunomodulatory, anti-inflammatory, and procoagulant activity secreted from the rat seminal vesicle epithelium. The monomeric and trimeric forms were characterized in solution by CD. Details of the self-association process and structural changes that accompany aggregation were investigated by different experimental approaches: trypsin proteolysis, sequence analysis, chemical modification, and computer modeling. The self-association process induces conformational change mainly in the 1-70 region, which appears to be without secondary structure in the monomer but contains alpha-helix in the trimer. In vivo, proteolysis of seminal vesicle protein no. 4 generates active peptides and this is affected by the monomer/trimer state, which is regulated by the concentration of the protein. The information obtained shows how conformational changes between the monomeric and trimeric forms represent a crucial aspect of activity modulation.  相似文献   

18.
Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. We demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10----Asp, ProB28----Lys, and LysB29----Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1H NMR studies of native human insulin and a series of three related analogues--(i) the singly substituted analogue [HisB10----Asp], (ii) the doubly substituted analogue [ProB28----Lys; LysB29----Pro], and (iii) DKP-insulin--demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2H and 13C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid [Hua, Q. X., & Weiss, M. A. (1991) Biochemistry 30, 5505-5515]. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues.  相似文献   

19.
The solution structure and self-association behaviour of a 13 residue peptide analogue of the C-terminal region of human neuropeptide Y (NPY) have been investigated. NMR analysis of Ac[Leu(28,31)]NPY(24-36), a potent Y2 receptor agonist, shows that it is unstructured in aqueous solution at 5-20 degrees C, but forms a well-defined helix (encompassing residues 25-35) in 40% trifluoroethanol/water at 20 degrees C. Sedimentation experiments show that, in contrast to many peptides in aqueous trifluoroethanol, Ac[Leu(28,31)]NPY(24-36) associates to form a trimer or, more likely, a tetramer in 40% trifluoroethanol, even though it is monomeric in water. This is consistent with the observation of inter-molecular nuclear Overhauser enhancements in trifluoroethanol. Possible models of the associated form that are consistent with the NMR data are described. The relevance of the helical structure observed in trifluoroethanol to the structure of this peptide bound to the NPY Y2 receptor is discussed.  相似文献   

20.
Arrestins play a key role in the homologous desensitization of G protein-coupled receptors (GPCRs). These cytosolic proteins selectively bind to the agonist-activated and GPCR kinase-phosphorylated forms of the GPCR, precluding its further interaction with the G protein. Certain mutations in visual arrestin yield "constitutively active" proteins that bind with high affinity to the light-activated form of rhodopsin without requiring phosphorylation. The crystal structure of visual arrestin shows that these activating mutations perturb two groups of intramolecular interactions that keep arrestin in its basal (inactive) state. Here we introduced homologous mutations into arrestin2 and arrestin3 and found that the resulting mutants bind to the beta(2)-adrenoreceptor in vitro in a phosphorylation-independent fashion. The same mutants effectively desensitize both the beta(2)-adrenergic and delta-opioid receptors in the absence of receptor phosphorylation in Xenopus oocytes. Moreover, the arrestin mutants also desensitize the truncated delta-opioid receptor from which the C terminus, containing critical phosphorylation sites, has been removed. Conservation of the phosphate-sensitive hot spots in non-visual arrestins suggests that the overall fold is similar to that of visual arrestin and that the mechanisms whereby receptor-attached phosphates drive arrestin transition into the active binding competent state are conserved throughout the arrestin family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号