首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Plant phylogeny constrains orchid mycorrhizal(OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species,and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota(9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.  相似文献   

2.
Northeastern Estonia is home to extensive oil shale mines. Associated with these are desolate and environmentally damaging hills of ash and semicoke tailings. Interestingly, some of the first plants to colonize these hills are rare orchids. Here, we assess the identities of the mycorrhizal fungi associated with these orchids, in particular Epipactis atrorubens, Orchis militaris, and Dactylorhiza baltica, and compare them with mycorrhizal fungi from orchids from pristine habitat. Epipactis atrorubens associated with the widest breadth of fungi, including unnamed members of the basidiomycete family Tulasnellaceae and the potentially ectomycorrhizal ascomycetes Trichophaea woolhopeia and Geopora cooperi. Orchis militaris also associated with unnamed members of the Tulasnellaceae. Dactylorhiza baltica associated with Ceratobasidium albasitensis. In Epipactis and Orchis, the same fungi associated with plants in the pristine habitat as with those on ash hills. The tulasnelloid and ceratobasidioid fungi mycorrhizal with these orchids appear closely related to common orchid mycorrhizal fungi, while one of the ascomycetes mycorrhizal with E. atrorubens is closely related to a mycorrhizal fungus with E. microphylla. Our results suggest that these orchids and their fungi are not limited to pristine habitats and that environmentally polluted sites may present novel habitats that may be exploited for endangered plant conservation.  相似文献   

3.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

4.
Although coevolution is acknowledged to occur in nature, coevolutionary patterns in symbioses not involving species-to-species relationships are poorly understood. Mycorrhizal plants are thought to be too generalist to coevolve with their symbiotic fungi; yet some plants, including some orchids, exhibit strikingly narrow mycorrhizal specificity. Here, we assess the evolutionary history of mycorrhizal specificity in the lady's slipper orchid genus, Cypripedium. We sampled 90 populations of 15 taxa across three continents, using DNA methods to identify fungal symbionts and quantify mycorrhizal specificity. We assessed phylogenetic relationships among sampled Cypripedium taxa, onto which we mapped mycorrhizal specificity. Cypripedium taxa associated almost exclusively with fungi within family Tulasnellaceae. Ancestral specificity appears to have been narrow, followed by a broadening after the divergence of C. debile. Specificity then narrowed, resulting in strikingly narrow specificity in most of the taxa in this study, with no taxon rewidening to the same extant as basal members of the genus. Sympatric taxa generally associated with different sets of fungi, and most clades of Cypripedium-mycorrhizal fungi were found throughout much of the northern hemisphere, suggesting that these evolutionary patterns in specificity are not the result of biogeographic lack of opportunity to associate with potential partners. Mycorrhizal specificity in genus Cypripedium appears to be an evolvable trait, and associations with particular fungi are phylogenetically conserved.  相似文献   

5.
Orchidaceae is one of the most species-rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and their life cycle. The level of specificity of the association between orchid species and fungi can be related to the number of co-occurring orchid species. To investigate orchid mycorrhizal associations in adult-photosynthetic orchids, 16 Mediterranean orchid species belonging to 4 genera (Anacamptis, Ophrys, Orchis, and Serapias) at 11 different sites were subjected to DNA-based analysis. Eighteen operational taxonomic units representing two fungal families, Tulasnellaceae and Ceratobasidiaceae, were identified. All examined orchid species associated with different mycorrhizal fungi. Interestingly, there was a positive correlation between number of orchid species and number of mycorrhizal. Monospecific populations showed a lower number of fungi, while sympatric populations had a higher number of mycorrhizal fungi. Our results showed that Mediterranean orchid species associated with a higher number of mycorrhizal fungi confirming as photosynthetic orchids are typically generalists toward mycorrhizal fungi. Thus, photosynthetic orchids exhibit low specificity for fungal symbionts showing the potential for opportunistic associations with diverse fungi reducing competition for nutrient. We suggest that these characteristics could confer symbiotic assurance particularly in habitat with resource limitations or prone to stressful conditions.  相似文献   

6.
? Nonrandom species-species associations may arise from a range of factors, including localized dispersal, intra- and interspecific interactions and heterogeneous environmental conditions. Because seed germination and establishment in orchids are critically dependent upon the availability of suitable mycorrhizal fungi, species-species associations in orchids may reflect associations with mycorrhizal fungi. ? To test this hypothesis, we examined spatial association patterns, mycorrhizal associations and germination success in a hybrid zone containing three species of the genus Orchis (Orchis anthropophora, Orchis militaris and Orchis purpurea). ? Hybridization occurred predominantly between O. purpurea and O. militaris. The spatial distribution patterns of most pure species and hybrids were independent from each other, except that of O. purpurea and its hybrids. The fungal community composition of established individuals differed significantly between pure species, but not between hybrids and O. purpurea. Seed germination experiments using pure seeds showed that the highest number of protocorms were found in regions where adult individuals were most abundant. In the case of hybrid seeds, germination was restricted to areas where the mother plant was most abundant. ? Overall, these results suggest that the observed nonrandom spatial distribution of both pure and hybrid plants is dependent on the contingencies of the spatial distribution of suitable mycorrhizal fungi.  相似文献   

7.

Background

Orchid species rely on mycorrhizal symbioses with fungi to complete their life cycle. Although there is mounting evidence that orchids can associate with several fungi from different clades or families, less is known about the actual geographic distribution of these fungi and how they are distributed across different orchid species within a genus.

Methodology/Principal Findings

We investigated among-population variation in mycorrhizal associations in five species of the genus Dactylorhiza (D. fuchsii, D. incarnata, D. maculata, D. majalis and D. praetermissa) using culture-independent detection and identification techniques enabling simultaneous detection of multiple fungi in a single individual. Mycorrhizal specificity, determined as the number of fungal operational taxonomic units (OTUs), and phylogenetic diversity of fungi were compared between species, whereas discriminant analysis was used to compare mycorrhizal spectra across populations and species. Based on a 95% cut-off value in internal transcribed spacer (ITS) sequence similarity, a total of ten OTUs was identified belonging to three different clades within the Tulasnellaceae. Most OTUs were found in two or more Dactylorhiza species, and some of them were common and widespread, occurring in more than 50% of all sampled populations. Each orchid species associated with at least five different OTUs, whereas most individuals also associated with two or more fungal OTUs at the same time. Phylogenetic diversity, corrected for species richness, was not significantly different between species, confirming the generality of the observed orchid mycorrhizal associations.

Conclusions/Significance

We found that the investigated species of the genus Dactylorhiza associated with a wide range of fungal OTUs from the Tulasnellaceae, some of which were widespread and common. These findings challenge the idea that orchid rarity is related to mycorrhizal specificity and fungal distribution.  相似文献   

8.
Fungal mutualisms are essential for the evolution and diversification of Orchidaceae, yet the fungal symbionts of Pleione orchids are poorly understood because molecular data are unavailable for this genus. Based on ITS-rDNA sequencing for mycobionts of 15 Pleione species (both wild and cultivated plants were included), we conducted phylogenetic analyses for the most dominant mycobionts, and compared the operational taxonomic units (OTUs) of mycorrhizal fungi among species within Pleione. Tulasnellaceae, Ceratobasidiaceae, Serendipitaceae (Sebacinales), Atractiellales, and Auriculariales were reported as putative mycobionts of Pleione. In particular, the mycorrhizal associations between subtropical orchids and Atractiellales have not been observed before. For the dominant mycobionts in the roots of Pleione and its related genera, Bletilla and Coelogyne, we detected no fungal OTU that was shared. Within Pleione, species with a sympatric distribution showed preferences for different fungi. Epiphytic and lithophytic individuals of Pleione albiflora shared OTUs of Tulasnellaceae but harbored different OTUs of Sebacinales, indicating some degree of fungal specificity toward certain habitats. These findings provide new insights into the ecological adaptation and evolution of orchids, and will contribute to the conservation and utilization of species resources.  相似文献   

9.
Most orchid species rely on mycorrhizae to complete their life cycle. Despite a growing body of literature identifying orchid mycorrhizal associations, the nature and specificity of the association between orchid species and mycorrhizal fungi remains largely an open question. Nonetheless, better insights into these obligate plant–fungus associations are indispensable for understanding the biology and conservation of orchid populations. To investigate orchid mycorrhizal associations in five species of the genus Orchis (O. anthropophora, O. mascula, O. militaris, O. purpurea, and O. simia), we developed internal transcribed spacer‐based DNA arrays from extensive clone library sequence data sets, enabling rapid and simultaneous detection of a wide range of basidiomycetous mycorrhizal fungi. A low degree of specificity was observed, with two orchid species associating with nine different fungal partners. Phylogenetic analysis revealed that the majority of Orchis mycorrhizal fungi are members of the Tulasnellaceae, but in some plants, members of the Thelephoraceae, Cortinariaceae and Ceratobasidiaceae were also found. In all species except one (O. mascula), individual plants associated with more than one fungus simultaneously, and in some cases, associations with ≥3 mycorrhizal fungi at the same time were identified. Nestedness analysis showed that orchid mycorrhizal associations were significantly nested, suggesting asymmetric specialization and a dense core of interactions created by symmetric interactions between generalist species. Our results add support to the growing literature that multiple associations may be common among orchids. Low specificity or preference for a widespread fungal symbiont may partly explain the wide distribution of the investigated species.  相似文献   

10.
Host breadth is often assumed to have no evolutionary significance in broad interactions because of the lack of cophylogenetic patterns between interacting species. Nonetheless, the breadth and suite of hosts utilized by one species may have adaptive value, particularly if it underlies a common ecological niche among hosts. Here, we present a preliminary assessment of the evolution of mycorrhizal specificity in 12 closely related orchid species (genera Goodyera and Hetaeria) using DNA‐based methods. We mapped specificity onto a plant phylogeny that we estimated to infer the evolutionary history of the mycorrhiza from the plant perspective, and hypothesized that phylogeny would explain a significant portion of the variance in specificity of plants on their host fungi. Sampled plants overwhelmingly associated with genus Ceratobasidium, but also occasionally with some ascomycetes. Ancestral mycorrhizal specificity was narrow in the orchids, and broadened rarely as Goodyera speciated. Statistical tests of phylogenetic inertia suggested some support for specificity varying with increasing phylogenetic distance, though only when the phylogenetic distance between suites of fungi interacting with each plant taxon were taken into account. These patterns suggest a role for phylogenetic conservatism in maintaining suits of fungal hosts among plants. We stress the evolutionary importance of host breadth in these organisms, and suggest that even generalists are likely to be constrained evolutionarily to maintaining associations with their symbionts.  相似文献   

11.
All orchids have an obligate relationship with mycorrhizal symbionts. Most orchid mycorrhizal fungi are classified in the form-genus Rhizoctonia. This group includes anamorphs of Tulasnella, Ceratobasidium, and Thanatephorus. Rhizoctonia can be classified according to the number of nuclei in young cells (multi-, bi-, and uninucleate). From nine Puerto Rican orchids we isolated 108 Rhizoctonia-like fungi. Our isolates were either bi- or uninucleate, the first report of uninucleate Rhizoctonia-like fungi as orchid endophytes. We sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from 26 isolates and identified four fungal lineages, all related to Ceratobasidium spp. from temperate regions. Most orchid species hosted more than one lineage, demonstrating considerable variation in mycorrhizal associations even among related orchid species. The uninucleate condition was not a good phylogenetic character in mycorrhizal fungi from Puerto Rico. All four lineages were represented by fungi from Tolumnia variegata, but only one lineage included fungi from Ionopsis utricularioides. Tropical epiphytic orchids appear to vary in degree of specificity in their mycorrhizal interactions more than previously thought.  相似文献   

12.
Dendrobium is a large genus of tropical epiphytic orchids. Some members of this genus are in danger of extinction across China. To investigate orchid mycorrhizal associations of the genus Dendrobium, plants from two Dendrobium species (Dendrobium officinale and Dendrobium fimbriatum) were collected from two habitats in Guangxi Province, China, and clone libraries were constructed to identify the mycorrhizal fungi of individual plants. A low and high degree of specificity was observed in D. officinale and D. fimbriatum, respectively. Phylogenetic analysis revealed that the majority of Dendrobium mycorrhizal fungi are members of the Tulasnellaceae, but, in some plants, members of the Ceratobasidiaceae and Pluteaceae were also found. In D. officinale, individual plants associated with more than three fungi simultaneously, and, in some cases, associations with five fungi at the same time. One fungus was shared by individual plants of D. officinale collected from the two habitats. In D. fimbriatum, only one fungal partner was found in each population, and this fungus differed between populations. The two species of Dendrobium sampled from the same habitat did not share any fungal taxa. These results provide valuable information for conservation of these orchid species.  相似文献   

13.
Symbiotic interactions are common in nature. In dynamic or degraded environments, the ability to associate with multiple partners (i.e. broad specificity) may enable species to persist through fluctuations in the availability of any particular partner. Understanding how species interactions vary across landscapes is necessary to anticipate direct and indirect consequences of environmental degradation on species conservation. We asked whether mycorrhizal symbiosis by populations of a rare epiphytic orchid (Epidendrum firmum) is related to geographic or environmental heterogeneity. The latter would suggest that interactions are governed by environmental conditions rather than historic isolation of populations and/or mycorrhizal fungi. We used DNA-based methods to identify mycorrhizal fungi from eleven E. firmum populations in Costa Rica. We used molecular and phylogenetic analyses to compare associations. Epidendrum firmum exhibited broad specificity, associating with diverse mycorrhizal fungi, including six Tulasnellaceae molecular operational taxonomic units (MOTUs), five Sebacinales MOTUs and others. Notably, diverse mycorrhizal symbioses formed in disturbed pasture and roadside habitats. Mycorrhizal fungi exhibited significant similarity within populations (spatial and phylogenetic autocorrelation) and significant differences among populations (phylogenetic community dissimilarity). However, mycorrhizal symbioses were not significantly associated with biogeographic or environmental features. Such unexpected heterogeneity among populations may result from complex combinations of fine-scale environmental factors and macro-evolutionary patterns of change in mycorrhizal specificity. Thus, E. firmum exhibits broad specificity and the potential for opportunistic associations with diverse fungi. We suggest that these characteristics could confer symbiotic assurance when mycorrhizal fungi are stochastically available, which may be crucial in dynamic or disturbed habitats such as tropical forest canopies.  相似文献   

14.
徐玲玲  张焱  许静 《菌物学报》2019,38(3):291-312
兰科植物与丝核菌类真菌,包括胶膜菌科、角担菌科和蜡壳菌科等形成菌根共生体。胶膜菌科真菌作为最广泛分布的共生菌根真菌,表现出与兰科植物的协同进化与密切关系。除了形态学特征分析和比较外,分子技术促进了兰科植物胶膜菌的分类学和多样性研究。兰科植物与胶膜菌的特异性可能限制兰科植物的分布和移栽后的生存能力,但有些兰科植物与胶膜菌的共生关系会因为地理分布或环境变化进行调整,使植物更好地生存,这种适应性为实现无菌苗菌根化来促进兰科植物的迁地保护或繁殖提供可能。本文综述了兰科植物共生菌根真菌胶膜菌在分类学、多样性、特异性和适应性等方面的研究。  相似文献   

15.
Lady's slipper orchids (Cypripedium spp.) are rare terrestrial plants that grow throughout the temperate Northern Hemisphere. Like all orchids, they require mycorrhizal fungi for germination and seedling nutrition. The nutritional relationships of adult Cypripedium mycorrhizae are unclear; however, Cypripedium distribution may be limited by mycorrhizal specificity, whether this specificity occurs only during the seedling stage or carries on into adulthood. We attempted to identify the primary mycorrhizal symbionts for 100 Cypripedium plants, and successfully did so with two Cypripedium calceolus, 10 Cypripedium californicum, six Cypripedium candidum, 16 Cypripedium fasciculatum, two Cypripedium guttatum, 12 Cypripedium montanum, and 11 Cypripedium parviflorum plants from a total of 44 populations in Europe and North America, yielding fungal nuclear large subunit and mitochondrial large subunit sequence and RFLP (restriction fragment length polymorphism) data for 59 plants. Because orchid mycorrhizal fungi are typically observed without fruiting structures, we assessed fungal identity through direct PCR (polymerase chain reaction) amplification of fungal genes from mycorrhizally colonized root tissue. Phylogenetic analysis revealed that the great majority of Cypripedium mycorrhizal fungi are members of narrow clades within the fungal family Tulasnellaceae. Rarely occurring root endophytes include members of the Sebacinaceae, Ceratobasidiaceae, and the ascomycetous genus, Phialophora. C. californicum was the only orchid species with apparently low specificity, as it associated with tulasnelloid, ceratobasidioid, and sebacinoid fungi in roughly equal proportion. Our results add support to the growing literature showing that high specificity is not limited to nonphotosynthetic plants, but also occurs in photosynthetic ones.  相似文献   

16.
The study of congruency between phylogenies of interacting species can provide a powerful approach for understanding the evolutionary history of symbiotic associations. Orchid mycorrhizal fungi can survive independently of orchids making cospeciation unlikely, leading us to predict that any congruence would arise from host-switches to closely related fungal species. The Australasian orchid subtribe Drakaeinae is an iconic group of sexually deceptive orchids that consists of approximately 66 species. In this study, we investigated the evolutionary relationships between representatives of all six Drakaeinae orchid genera (39 species) and their mycorrhizal fungi. We used an exome capture dataset to generate the first well-resolved phylogeny of the Drakaeinae genera. A total of 10 closely related Tulasnella Operational Taxonomic Units (OTUs) and previously described species were associated with the Drakaeinae orchids. Three of them were shared among orchid genera, with each genus associating with 1–6 Tulasnella lineages. Cophylogenetic analyses show Drakaeinae orchids and their Tulasnella associates exhibit significant congruence (p < 0.001) in the topology of their phylogenetic trees. An event-based method also revealed significant congruence in Drakaeinae–Tulasnella relationships, with duplications (35), losses (25), and failure to diverge (9) the most frequent events, with minimal evidence for cospeciation (1) and host-switches (2). The high number of duplications suggests that the orchids speciate independently from the fungi, and the fungal species association of the ancestral orchid species is typically maintained in the daughter species. For the Drakaeinae–Tulasnella interaction, a pattern of phylogenetic niche conservatism rather than coevolution likely explains the observed phylogenetic congruency in orchid and fungal phylogenies. Given that many orchid genera are characterized by sharing of fungal species between closely related orchid species, we predict that these findings may apply to a wide range of orchid lineages.  相似文献   

17.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   

18.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

19.
Mycorrhizal association is a common characteristic in a majority of land plants, and the survival and distribution of a species can depend on the distribution of suitable fungi in its habitat. Orchidaceae is one of the most species‐rich angiosperm families, and all orchids are fully dependent on fungi for their seed germination and some also for subsequent growth and survival. Given this obligate dependence, at least in the early growth stages, elucidating the patterns of orchid–mycorrhizal relationships is critical to orchid biology, ecology and conservation. To assess whether rarity of an orchid is determined by its specificity towards its fungal hosts, we studied the spatial and temporal variability in the host fungi associated with one of the rarest North American terrestrial orchids, Piperia yadonii. The fungal internal transcribed spacer region was amplified and sequenced by sampling roots from eight populations of P. yadonii distributed across two habitats, Pinus radiata forest and maritime chaparral, in California. Across populations and sampling years, 26 operational taxonomic units representing three fungal families, the Ceratobasidiaceae, Sebacinaceae and Tulasnellaceae, were identified. Fungi belonging to the Sebacinaceae were documented in orchid roots only at P. radiata forest sites, while those from the Ceratobasidiaceae and Tulasnellaceae occurred in both habitats. Our results indicate that orchid rarity can be unrelated to the breadth of mycorrhizal associations. Our data also show that the dominance of various fungal families in mycorrhizal plants can be influenced by habitat preferences of mycorrhizal partners.  相似文献   

20.
3种杓兰属植物菌根真菌系统发育和多样性分析   总被引:1,自引:0,他引:1  
兰科植物菌根真菌(Orchid mycorrhizal fungi, OrMF)在兰科植物种子萌发和后续生长发育过程中具有重要作用。该研究采用培养(菌丝团分离)和非培养(克隆文库)2种方法获得同一栖息地3种不同杓兰属植物根中菌根真菌ITS序列并划分可操作分类单元(Operational taxonomic units, OTUs),分析其系统发育关系和多样性。结果表明:(1)所有根段中都有菌丝团定植,共分离出菌根真菌64株,其中63株为胶膜菌科(Tulasnellaceae)真菌,1株为角担菌科(Ceratobasidiaceae)真菌;可划分为7个OUT,每个OTU代表菌株的菌丝都能形成OrMF典型的近球形或椭球形链状排列的念珠状细胞;分离出来的菌根真菌均为无性型菌丝且不产生无性孢子。(2) 非培养法得到的3种杓兰属植物的根中OrMF分别隶属于胶膜菌科(Tulasnellaceae),腊壳菌科(Sebacinaceae)、角担菌科(Ceratobasidiaceae)和革菌科(Thelephoraceae),其中胶膜菌科OTU在种类和数量上占有绝对优势,培养和非培养2种方法得到的OrMF OTU类型和数量均为西藏杓兰(Cypripedium tibeticum)>无苞杓兰(C. flavum)>黄花杓兰(C. bardolphianum),但培养法少于非培养法。(3)对胶膜菌进行系统发育分析显示,优势和非优势OTU均分布在系统发育树的3个不同分支上,这种与多种亲缘关系较远的OrMF共生的现象可能与杓兰属植物对环境的适应性有关,且不同杓兰的OrMF物种丰富度没有显著差异,但群落结构存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号