首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Scandinavia, an increased red fox Vulpes vulpes density during the last decades has been suggested to be caused by direct and indirect human influences on food availability. Recently, attention has been focused on the role of increasing scavenging opportunities due to intensified hunting of ungulates and the reestablishment of large carnivores. In our study, we investigated seasonal and annual variations in diet composition of red fox in Varaldskogen, SE Norway, an area with cyclic voles and a high density of moose Alces alces. Analyses of scats revealed significant differences among seasons in the occurrence of ungulates—mainly moose—and ungulates were the dominating food category during winter (44.9 % of all remains). Snow tracking of red fox (71 km) in winter confirmed the importance of ungulate carcasses, i.e. one case of scavenging per 3 km. The proportions of voles were high during all seasons (11.2–28.8 %); in spite of variation in available abundances, no significant seasonal or annual differences were detected. Other food categories with seasonal variation were birds, berries/seeds and amphibians/reptiles, all more common in snow-free seasons. Our study underlines the importance of ungulate remains during periods when the abundance and diversity of alternative food sources is low. Increased and stabilized populations of red foxes—mediated through remains from hunting and wolf kills from high moose populations—might have an important effect on the population dynamics of small game. Hence, we recommend that this relationship be given attention in future studies.  相似文献   

2.
Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.  相似文献   

3.
Phenological events such as conception or parturition dates may have profound impact on several key life-history traits of ungulates at the individual as well as the population level. However, relatively little is known about the causes of variation in the timing of reproduction. Based on a 17-year survey of reproductive tracts, we investigated the effect of climate, population density, and age on the conception date of female moose (Alces alces) harvested in Estonia. Ninety-five percent of studied moose cows were conceived within a period of 9 weeks (29 August–30 October), while more than 45 % of all moose cows were conceived from 19 September to 2 October. Conception date was negatively related to population density and nonlinearly to the regional measure of winter climate reflecting the maximal extent of ice on the Baltic Sea (MIE) in the previous winter. High air temperatures during rut (in September) delayed the conception date. The timing of conception also depended on female age. Yearlings conceived significantly later as compared to females of all other age groups. Our findings corroborate the importance of density-dependent as well density-independent processes on the timing of conception of this ungulate. We also propose that the effect of population density on conception date may be mediated by increasing ecological carrying capacity concurrent with increasing population abundance.  相似文献   

4.
Ungulates are leading drivers of plant communities worldwide, with impacts linked to animal density, disturbance and vegetation structure, and site productivity. Many ecosystems have more than one ungulate species; however, few studies have specifically examined the combined effects of two or more species on plant communities. We examined the extent to which two ungulate browsers (moose [Alces americanus]) and white‐tailed deer [Odocoileus virginianus]) have additive (compounding) or compensatory (opposing) effects on herbaceous layer composition and diversity, 5–6 years after timber harvest in Massachusetts, USA. We established three combinations of ungulates using two types of fenced exclosures – none (full exclosure), deer (partial exclosure), and deer + moose (control) in six replicated blocks. Species composition diverged among browser treatments, and changes were generally additive. Plant assemblages characteristic of closed canopy forests were less abundant and assemblages characteristic of open/disturbed habitats were more abundant in deer + moose plots compared with ungulate excluded areas. Browsing by deer + moose resulted in greater herbaceous species richness at the plot scale (169 m2) and greater woody species richness at the subplot scale (1 m2) than ungulate exclusion and deer alone. Browsing by deer + moose resulted in strong changes to the composition, structure, and diversity of forest herbaceous layers, relative to areas free of ungulates and areas browed by white‐tailed deer alone. Our results provide evidence that moderate browsing in forest openings can promote both herbaceous and woody plant diversity. These results are consistent with the classic grazing‐species richness curve, but have rarely been documented in forests.  相似文献   

5.
Winter recreation can displace ungulates to poor habitats, which may raise their energy expenditure and lower individual survivorship, causing population declines. Winter recreation could be benign, however, if animals habituate. Moreover, recreation creates trails. Traveling on them could reduce energy expenditure, thereby increasing ungulate survivorship and generating population benefits. Balancing recreation use with wildlife stewardship requires identifying when these effects occur. This task would be simpler if guidelines existed to inform assessments. We developed and tested such guidelines using two approaches. First, we synthesized literature describing the effects of winter recreation—motorized and nonmotorized—on northern ungulates. This synthesis enabled formulating six guidelines, while exposing two requiring further attention (ungulate habituation and displacement). Second, we tested these two guidelines and evaluated the others by quantifying the behavioral responses of moose to snowmobiles, in two areas of south-central Alaska, differing by snowmobile predictability. For each location, we modeled moose preferences during the snowmobile period using different combinations of eight variables—static (elevation and slope), biotic (habitat and cover), and anthropogenic (distance to roads, railroads, snowmobile trails, and trail density). We identified the model with the most support and used it to estimate parameter coefficients for pre- and post-recreation periods. Changes in coefficients between periods indicated snowmobile effects on moose. Overall, we produced and evaluated six guidelines describing when winter recreation is potentially detrimental to ungulates as follows: (1) when unpredictable, (2) spanning large areas, (3) long in duration, (4) large spatial footprint, (5) nonmotorized, and (6) when animals are displaced to poor quality habitats.  相似文献   

6.
7.
The harvest of ungulate populations is often directed against certain sex or age classes to maximize the yield in terms of biomass, number of shot animals or number of trophies. Here we examine how such directional harvest affects the effective size of the population. We parameterize an age-specific model assumed to describe the dynamics of Fennoscandian moose. Based on expressions for the demographic variance     for a small subpopulation of heterozygotes Aa bearing a rare neutral allele a , we use this model to calculate how different harvest strategies influence the effective size of the population, given that the population remains stable after harvest. We show that the annual genetic drift, determined by     , increases with decreasing harvest rate of calves and increasing sex bias in the harvest towards bulls 1 year or older. The effective population size per generation decreased with reduced harvest of calves and increased harvest of bulls 1 year or older. The magnitude of these effects depends on the age-specific pattern of variation in reproductive success, which influences the demographic variance. This shows that the choice of harvest strategy strongly affects the genetic dynamics of harvested ungulate populations.  相似文献   

8.
Estimating the population growth rate and environmental stochasticity of long-lived species is difficult because annual variation in population size is influenced by temporal autocorrelations caused by fluctuations in the age-structure. Here we use the dynamics of the reproductive value to estimate the long-term growth rate s and the environmental variance of a moose population that recently colonized the island of Vega in northern Norway. We show that the population growth rate was high (ŝ=0.26). The major stochastic influences on the population dynamics were due to demographic stochasticity, whereas the environmental variance was not significantly different from 0. This supports the suggestion that population growth rates of polytocous ungulates are high, and that demographic stochasticity must be assessed when estimating the growth of small ungulate populations.  相似文献   

9.
Theory on density-dependent habitat selection predicts that as population density of a species increases, use of higher quality (primary) habitat by individuals declines while use of lower quality (secondary) habitat rises. Habitat partitioning is often considered the primary mechanism for coexistence between similar species, but how this process evolves with changes in population density remains to be empirically tested for free-ranging ungulates. We used resource-selection functions to quantify density effects on landscape-scale habitat selection of two sympatric species of ungulates [moose (Alces alces) and elk (Cervus canadensis manitobensis)] in Riding Mountain National Park, Manitoba, Canada (2000–2011). The density of elk was actively reduced from 1.2 to 0.4 elk km?2 through increased hunting effort during the period of study, while moose density decreased without additional human influence from 1.6–0.7 moose km?2. Patterns of habitat selection during winter by both species changed in accordance to expectations from density-dependent habitat-selection theory. At low intraspecific density, moose and elk did not partition habitat, as both species selected strongly for mixed forest (primary habitat providing both food and cover), but did so in different areas segregated across an elevational gradient. As intraspecific density increased, selection for primary habitat by both species decreased, while selection for secondary, lower quality habitat such as agricultural fields (for elk) and built-up areas (for moose) increased. We show that habitat-selection strategies during winter for moose and elk, and subsequent effects on habitat partitioning, depend heavily on the position in state space (density) of both species.  相似文献   

10.
Understanding predator-prey dynamics is an important component of management strategy development for wildlife populations that are directly affected by predation. Ungulates often serve as a significant source of prey for many large mammal predators, and patterns of predation are known to influence population dynamics. Although black bear and wolf diets have been investigated extensively, prey preference has been less commonly examined, especially in analyses that take into account age class (i.e., juvenile and adult) of the ungulate prey. We examined black bear (Ursus americanus), wolf (Canis lupus), and hybrids (Canis spp.) prey preference in Ontario based on the availability of three ungulate species—elk (Cervus elaphus), moose (Alces alces), and white-tailed deer (Odocoileus virginianus). We analyzed the presence of prey items in black bear and wolf scats collected over 3 years by examining prey hair cuticular scale patterns. We applied correction factors to frequencies of occurrence of prey items found in predator scat and related diet composition to the availability of ungulates, determined by fecal pellet transect surveys. In addition, non-ungulate diet items were identified to obtain full diet composition profiles. We found that black bear diet consisted of more than 87% vegetation, and they were opportunistic, not selecting for any particular ungulate species in either adult or juvenile age class. Wolf diet was comprised mainly of ungulates (~?73.2%), muskrat (Ondatra zibethica; ~?8.5%), and beaver (Castor canadensis; ~?14.6%), and although moose were at least 1.5 times more abundant then each of the other ungulate prey species in the study area, wolves preferred elk, using moose less than expected. Although we found black bear diet to be opportunistic during the summer, wolves in our study heavily utilized both juvenile and adult ungulates, however, among ungulate species, displayed preference for elk. The preference displayed by wolves provides insight that wildlife managers can use to guide further investigation and assist with the development of strategies to ensure continued elk reintroduction success, and moose and white-tailed deer population sustainability.  相似文献   

11.
Long-term, concurrent measurement of population dynamics and associated top-down and bottom-up processes are rare for unmanipulated, terrestrial systems. Here, we analyse populations of moose, their predators (wolves, Canis lupus), their primary winter forage (balsam fir, Abies balsamea) and several climatic variables that were monitored for 40 consecutive years in Isle Royale National Park (544 km2), Lake Superior, USA. We judged the relative importance of top-down, bottom-up and abiotic factors on moose population growth rate by constructing multiple linear regression models, and calculating the proportion of interannual variation in moose population growth rate explained by each factor. Our analysis indicates that more variation in population growth rate is explained by bottom-up than top-down processes, and abiotic factors explain more variation than do bottom-up processes. Surprisingly, winter precipitation did not explain any significant variation in population growth rate. Like that detected for two Norwegian ungulate populations, the relationship between population growth rate and the North Atlantic Oscillation was nonlinear. Although this analysis provides significant insight, much remains unknown: of the models examined, the most parsimonious explain little more than half the variation in moose population growth rate.  相似文献   

12.
The effects of multispecific systems containing both mutualistic and antagonistic interacting organisms on the evolution of plant traits have seldom been analyzed. We studied the selection exerted by several species of herbivores and pollinators in three populations of Hormathophylla spinosa (Cruciferae) in the Sierra Nevada (Spain) over 4 yr by using path analyses and structural equation modeling (SEM). The main selective pressures in our study sites were ungulates and pollinators. However, the importance of each kind of interacting organism differed among populations. Our results indicate a selection mosaic among populations of H. spinosa in the Sierra Nevada caused by the spatial variation in the relative importance of different interactions as selective pressures. We found two main selective scenarios, depending on the presence or absence of ungulates. In the populations with low ungulate pressure, there was positive phenotypic selection in flower number per plant and in flower density (mediated by nectarivorous pollinators). In the two populations with high ungulate pressure, there was a strong positive, ungulate-mediated selection in thorn density. Our results suggest that the application of SEM to several populations simultaneously monitored might help to isolate the major selection pressures on local populations and identify potential differences in selection among populations, becoming a useful exploratory approach to study the geographical variation of selection in complex systems.  相似文献   

13.
The monitoring of population trends of wild ungulates is important to evaluate their population dynamics and to develop sound conservation/management plans. The wild boar Sus scrofa can impose heavy impacts on ecosytems and human activities, as well as be responsible for disease transmission. Estimating abundance of wild boars is a challenging issue, because of some peculiar biological and ecological traits of this ungulate. Indices of relative abundance could be used to evaluate its population trends. In a Mediterranean area we used faeces counts, through a two-stage stratified sampling, to estimate relative densities of wild boars, between 2007 and 2014. Faeces density estimates increased not significantly between 2007 (151.5 faeces/100 ha) and 2010 (203.8 faeces/100 ha) and decreased significantly from 2010 to 2014 (95.5 faeces/100 ha). The decrease in faeces density estimates was consistent with the increased harvest effort (number of harvest days), performed from 2010 to 2013 to limit impact on ecosystems and reduce damages to crops. The variation of faeces density estimates was also consistent with that of harvest indices (total harvest to harvest effort), with significantly positive values of Pearson and rank correlation coefficients. Results suggest that faeces density estimates achieved with the adopted sampling strategies can be effectively used as indices of relative abundance.  相似文献   

14.
ABSTRACT Given recent actions to increase sustained yield of moose (Alces alces) in Alaska, USA, we examined factors affecting yield and moose demographics and discussed related management. Prior studies concluded that yield and density of moose remain low in much of Interior Alaska and Yukon, Canada, despite high moose reproductive rates, because of predation from lightly harvested grizzly (Ursus arctos) and black bear (U. americanus) and wolf (Canis lupus) populations. Our study area, Game Management Unit (GMU) 20A, was also in Interior Alaska, but we describe elevated yield and density of moose. Prior to our study, a wolf control program (1976–1982) helped reverse a decline in the moose population. Subsequent to 1975, moose numbers continued a 28-year, 7-fold increase through the initial 8 years of our study (λB1 = 1.05 during 1996–2004, peak density = 1,299 moose/1,000 km2). During these initial 8 hunting seasons, reported harvest was composed primarily of males ( = 88%). Total harvest averaged 5% of the prehunt population and 57 moose/1,000 km2, the highest sustained harvest-density recorded in Interior Alaska for similar-sized areas. In contrast, sustained total harvests of <10 moose/1,000 km2 existed among low-density, predator-limited moose populations in Interior Alaska (≤417 moose/1,000 km2). During the final 3 years of our study (2004–2006), moose numbers declined (λB2 = 0.96) as intended using liberal harvests of female and male moose ( = 47%) that averaged 7% of the prehunt population and 97 moose/1,000 km2. We intentionally reduced high densities in the central half of GMU 20A (up to 1,741 moose/1,000 km2 in Nov) because moose were reproducing at the lowest rate measured among wild, noninsular North American populations. Calf survival was uniquely high in GMU 20A compared with 7 similar radiocollaring studies in Alaska and Yukon. Low predation was the proximate factor that allowed moose in GMU 20A to increase in density and sustain elevated yields. Bears killed only 9% of the modeled postcalving moose population annually in GMU 20A during 1996–2004, in contrast to 18–27% in 3 studies of low-density moose populations. Thus, outside GMU 20A, higher bear predation rates can create challenges for those desiring rapid increases in sustained yield of moose. Wolves killed 8–15% of the 4 postcalving moose populations annually (10% in GMU 20A), hunters killed 2–6%, and other factors killed 1–6%. Annually during the increase phase in GMU 20A, calf moose constituted 75% of the predator-killed moose and predators killed 4 times more moose than hunters killed. Wolf predation on calves remained largely additive at the high moose densities studied in GMU 20A. Sustainable harvest-densities of moose can be increased several-fold in most areas of Interior Alaska where moose density and moose: predator ratios are lower than in GMU 20A and nutritional status is higher. Steps include 1) reducing predation sufficient to allow the moose population to grow, and 2) initiating harvest of female moose to halt population growth and maximize harvest after density-dependent moose nutritional indices reach or approach the thresholds we previously published.  相似文献   

15.
The sustainability of wild ungulate harvests can be greatly enhanced if monitoring data are available to permit an adaptive management approach. Utilising data provided by hunters is potentially the most cost-effective approach. In Scandinavia, observations recorded by moose (Alces alces) hunters provide a range of indices of population density, composition and reproductive performance. These are routinely used in practical management, but there are still many questions about their accuracy and precision. In this study, we availed of the fact that virtually all individual moose on the island of Vega in central Norway were marked during the period 1992–2005. Thus, we were able to compare the observation indices provided by hunters to the known size and composition of the population. The results indicate that the hunter observation indices provided accurate estimates of variation in moose cow recruitment and twinning rates. The estimates of sex ratio closely followed the pattern of annual variation but showed a consistent pattern of over-estimating the proportion of males. Thus, males seem to visually expose themselves more often for hunters than do females. The density index, measured as number of moose seen per hunter day did not to the same extent follow the variation in population density, possibly because moose were more naive in the first years after hunting was introduced or because of reduced detection conditions due to increasing scrub and tree encroachment during the study period. The results are discussed in light of their application to management and the evolutionary pressures in moose anti-predator behaviour.  相似文献   

16.
Shifts in native ungulate communities on a former cattle ranch in Tanzania   总被引:3,自引:0,他引:3  
When an area is brought under protection, current animal populations and their habitat preferences need to be assessed to predict population trends and future habitat availability. Using data from walking transects, we estimated the size of native ungulate populations on an abandoned cattle ranch in a coastal savannah in Tanzania, now included in the new Saadani National Park. Data were analysed with distance sampling and conventional strip transect techniques and were compared with results of previous wildlife counts. Few individuals of mainly browsing species were present in former cattle grazing areas exhibiting high bush‐encroachment while a ten times higher biomass of browsers and grazers was found in the cattle‐unmodified savannah. Population sizes of some species increased twofold between 1991 and 2001 within the entire area but neither population size nor species richness increased in the abandoned rangeland during our 3‐year study period from 2001 to 2003. We conclude that the former ranch has potential for future recolonization by wild ungulates. Resettlement will take place gradually with ‘pioneer‐species’ facilitating the entry of more demanding species. Habitat restoration through wildlife can be observed and quantified on Mkwaja Ranch which will be of importance for future management of native ungulates reclaiming abandoned rangeland.  相似文献   

17.
Trends in population growth can be monitored with data for key vital rates without knowledge of abundance. Although adult female survival has the highest elasticity for ungulate population dynamics, the more variable recruitment rates are commonly monitored to track local variation in growth rates. Specifically, recruitment is often measured using late winter young:adult age ratios, though these age ratios are difficult to reliably interpret given the contribution of multiple vital rates to annual ratios. We show that the supplementation of age ratio data with concurrent radio-telemetry monitoring of adult female survival allows both retrospective estimation of empirical population growth rates and the decomposition of recruitment-specific vital rates. We demonstrate the estimation of recruitment and population growth rates for 1 woodland caribou population using these methods, including elasticity and life-stage simulation analysis of the relative contribution of adult female survival and recruitment rates to variation in population growth. We show, for this woodland caribou population, that adult female survival and recruitment rates were nearly equivalent drivers of population growth. We recommend the concurrent monitoring of adult female survival to reliably interpret age ratios when managing caribou and other ungulates. © 2011 The Wildlife Society.  相似文献   

18.
Predation, habitat, hunting, and environmental conditions have all been implicated as regulatory mechanisms in ungulate populations. The low-density equilibrium hypothesis predicts that in low-density populations, predators regulate their prey and that the population will not escape unless predation pressure is eased. We evaluated survival of adult and juvenile moose (Alces alces) in north-central Alaska to determine whether or not the population supported the hypothesis. We instrumented adult male and female moose with radiocollars and used aerial observations to track parturition and subsequent survival of juvenile moose. Generalized linear mixed-effects models were used to assess survival. Adult annual survival rates were high (∼89%), but may be negatively influenced by winter conditions. Migratory status did not affect moose survivorship or productivity. Approximately 60% of the calf crop died before 5 months of age. Productivity was significantly lower in the northern section of the study area where there is less high-quality habitat, suggesting that, even in this low-density population, nutrition could be a limiting factor. It appears that predation on young calves, winter weather, and nutritional constraints may be interacting to limit this population. Latent traits, such as overproduction of calves and migratory behavior, which do not currently enhance fitness, may persist within this population so that individuals with these traits can reap benefits when environmental conditions change.  相似文献   

19.
Recently, the results from several long-term individual-based population studies of ungulates have been published. One major conclusion is that the population dynamics of ungulates in predator-free environments is strongly influenced by a combination of stochastic variation in the environment, and population density. Both density dependence and environmental stochasticity operate through changes in life history traits, correlated with variation in body weight. This generates delays in the response of the population to changes in environment. In the absence of predation, a stable equilibrium is therefore unlikely to exist between an ungulate population and its food resources. This thorough understanding of the mechanisms generating population fluctuations suggests that studies of ungulates will provide an important source for examining effects of long-term changes in the environment, for instance, resulting from a climatic change.  相似文献   

20.
Fine-scale movement data has transformed our knowledge of ungulate migration ecology and now provides accurate, spatially explicit maps of migratory routes that can inform planning and management at local, state, and federal levels. Among the most challenging land use planning issues has been developing energy resources on public lands that overlap with important ungulate habitat, including the migratory routes of mule deer (Odocoileus hemionus). We generally know that less development is better for minimizing negative effects and maintaining habitat function, but we lack information on the amount of disturbance that animals can tolerate before reducing use of or abandoning migratory habitat. We used global positioning system data from 56 deer across 15 years to evaluate how surface disturbance from natural gas well pads and access roads in western Wyoming, USA, affected habitat selection of mule deer during migration and whether any disturbance threshold(s) existed beyond which use of migratory habitat declined. We used resource and step selection functions to examine disturbance thresholds at 3 different spatial scales. Overall, migratory use by mule deer declined as surface disturbance increased. Based on the weight of evidence from our 3 independent but complementary metrics, declines in migratory use related to surface disturbance were non-linear, where migratory use sharply declined when surface disturbance from energy development exceeded 3%. Disturbance thresholds may vary across regions, species, or migratory habitats (e.g., stopover sites). Such information can help with management and land use decisions related to mineral leasing and energy development that overlap with the migratory routes of ungulates. © 2020 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号