首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase cascades provide the regulatory mechanisms for many of the essential processes in eukaryotic cells. Recent structural and biochemical work has revealed the basis of phosphorylation regulation of three consecutive protein kinases - phosphoinositide-dependent kinase 1 (PDK1), protein kinase B (PKB)/Akt and glycogen synthase kinase 3beta (GSK3beta) - which transduce signals generated by insulin and/or growth factors binding to cell surface receptors. PDK1 and PKB are both AGC family kinases. Whereas PKB is positively regulated via its phosphorylated C-terminal hydrophobic motif, the activity and specificity of PDK1 are determined by equivalent hydrophobic motifs of substrate AGC kinases. In a contrasting mechanism, GSK3beta is negatively regulated by competitive autoinhibition by its phosphorylated N terminus. GSK3beta also functions in the developmental Wnt signalling pathway, but without cross-talk with the PDK1-PKB/Akt pathway. Structural studies of GSK3beta complexes are contributing to our understanding of the phosphorylation-independent mechanism that insulates the Wnt and insulin/growth factor pathways.  相似文献   

2.
Glycogen synthase kinase 3beta (GSK3beta) is a key component in many biological processes including insulin and Wnt signaling. Since the activation of each signaling pathway results in a decrease in GSK3beta activity, we examined the specificity of their downstream effects in the same cell type. Insulin induces an increased activity of glycogen synthase but has no influence on the protein level of beta-catenin. In contrast, Wnt increases the cytosolic pool of beta-catenin but not glycogen synthase activity. We found that, unlike insulin, neither the phosphorylation status of the serine9 residue of GSK3beta nor the activity of protein kinase B is regulated by Wnt. Although the decrease in GSK3beta activity is required, GSK3beta may not be the limiting component for Wnt signaling in the cells that we examined. Our results suggest that the axin-conductin complexed GSK3beta may be dedicated to Wnt rather than insulin signaling. Insulin and Wnt pathways regulate GSK3beta through different mechanisms, and therefore lead to distinct downstream events.  相似文献   

3.
4.
It has been extensively described that neuronal differentiation involves the signalling through neurotrophin receptors to a Ras-dependent mitogen-activated protein kinase (MAPK) cascade. However, signalling pathways from other neuritogenic factors have not been well established. It has been reported that cAMP may activate protein kinase (PKA), and it has been shown that PKA-mediated stimulation of MAPK pathway regulates not only neuritogenesis but also survival. However, extracellular regulated kinases (ERKs) mediated pathways are not sufficient to explain all the processes which occur in neuronal differentiation. Our present data show that: in cAMP-mediated neuritogenesis, using the SH-SY5Y human neuroblastoma cell line, there exists a link between the activation of PKA and stimulation of phosphatidylinositol 3-kinase (PI3K). Both kinase activities are essential to the initial elongation steps. Surprisingly, this neuritogenic process appears to be independent of ERKs. While the activity of PI3K is essential for elongation and maintenance of neurites, its inhibition causes retraction. In this neurite retraction process, GSK3 is activated. Using both a pharmacological approach and gene transfer of a dominant negative form of GSK3, we conclude that this induced retraction is a GSK3-dependent process which in turn appears to be a common target for transduction pathways involved in lysophosphatidic acid-mediated and PI3K-mediated neurite retraction.  相似文献   

5.
Zhang N  Jiang Y  Zou J  Zhuang S  Jin H  Yu Q 《Proteins》2007,67(4):941-949
Glycogen synthase kinase 3beta (GSK 3beta) is a key component of several cellular processes including Wnt and insulin signalling pathways. The interaction of GSK3beta with scaffolding peptide axin is thought to be responsible for the effective phosphorylation of beta-catenin, the core effector of Wnt signaling, which has been linked with the occurrence of colon cancer and melanoma. It has been demonstrated that the binding of axin to GSK3beta is abolished by the single-point mutation of Val267 to Gly (V267G) in GSK3beta or Leu392 to Pro (L392P) in axin. Molecular dynamics (MD) simulations were performed on wild type (WT), V267G mutant and L392P one to elucidate the two unbinding mechanisms that occur through different pathways. Besides, rough energy and residue-based energy decomposition were calculated by MM_GBSA (molecular mechanical Generalized_Born surface area) approach to illuminate the instability of the two mutants. The MD simulations of the two mutants and WT reveal that the structure of GSK3beta remains unchanged, while axin moves away from the interfacial hydrophobic pockets in both two mutants. Axin exhibits positional shift in V267G mutant, whereas, losing the hydrogen bonds that are indispensable for stabilizing the helix structure of wild type axin, the helix of axin is distorted in L392P mutant. To conclude, both two mutants destroy the hydrophobic interaction that is essential to the stability of GSK3beta-axin complex.  相似文献   

6.
Glycogen synthase kinase 3beta (GSK3beta) is a serine/threonine kinase involved in insulin, growth factor and Wnt signalling. In Wnt signalling, GSK3beta is recruited to a multiprotein complex via interaction with axin, where it hyperphosphorylates beta-catenin, marking it for ubiquitylation and destruction. We have now determined the crystal structure of GSK3beta in complex with a minimal GSK3beta-binding segment of axin, at 2.4 A resolution. The structure confirms the co-localization of the binding sites for axin and FRAT in the C-terminal domain of GSK3beta, but reveals significant differences in the interactions made by axin and FRAT, mediated by conformational plasticity of the 285-299 loop in GSK3beta. Detailed comparison of the axin and FRAT GSK3beta complexes allows the generation of highly specific mutations, which abrogate binding of one or the other. Quantitative analysis suggests that the interaction of GSK3beta with the axin scaffold enhances phosphorylation of beta-catenin by >20 000-fold.  相似文献   

7.
Asymmetric body axis formation is central to metazoan development. Dictyostelium establishes an anterior/posterior axis utilizing seven-transmembrane cAMP morphogen receptors (CARs) and GSK3-mediated signal transductions that has a parallel with metazoan Wnt/Frizzled-GSK3 pathways. In Dictyostelium, GSK3 promotes posterior cell patterning but inhibits anterior cell differentiation. Tyrosine kinase ZAK1 mediates GSK3 activation. We now show that CAR4 regulates a tyrosine phosphatase that inhibits GSK3 activity. We have also identified essential phosphotyrosines in GSK3, confirmed their role in activated/deactivated regulation and cell fate decisions, and relate them to the predicted 3D structure of GSK3beta. CARs differentially regulate GSK3 activity by selectively activating a tyrosine phosphatase or kinase for pattern formation. The findings may provide a comparative understanding of CAR-GSK3 and Wnt/Frizzled-GSK3 pathways.  相似文献   

8.
9.
M Kortenjann  C Wehrle  M C Nehls  T Boehm 《Gene》2001,278(1-2):161-165
  相似文献   

10.
GSK‐3β is a key molecule in several signalling pathways, including the Wnt/β‐catenin signalling pathway. There is increasing evidence suggesting Wnt/β‐catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β‐catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β‐catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6‐bromoindirubin‐3′‐oxime), a specific GSK‐3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β‐tubulin III). Moreover, the expression of pGSK‐3β and stabilized β‐catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK‐3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β‐catenin signalling pathway towards neural fate.  相似文献   

11.
Germline LKB1/STK11 mutations are associated with the cancer-prone Peutz-Jeghers syndrome (PJS) in humans, and nullizygosity provokes a poorly understood constellation of developmental perturbations in the mid-gestational mouse. To gain a better understanding of the processes regulated by LKB1, we have exploited the experimental merits of the developing Xenopus embryo. Here, specific inhibition of XEEK1, the Xenopus orthologue of LKB1, engendered developmental anomalies - shortened body axis and defective dorsoanterior patterning - associated previously with aberrant Wnt signalling. In line with this, LKB1/XEEK1 cooperates with the Wnt-beta-catenin signalling in axis induction and modulates the expression of Wnt-responsive genes in both Xenopus embryos and mammalian cells. We establish that LKB1/XEEK1 acts upstream of beta-catenin in the Wnt-beta-catenin pathway in vivo. LKB1/XEEK1 regulates glycogen synthase kinase (GSK)3beta phosphorylation and it is physically associated in vivo with GSK3beta and protein kinase C (PKC)-zeta, a known GSK3 kinase. These studies show that LKB1/XEEK1 is required for Wnt-beta-catenin signalling in frogs and mammals and provides novel insights into its role in vertebrate developmental patterning and carcinogenesis.  相似文献   

12.
GSK3β (glycogen synthase kinase 3β) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3β activity is implicated in disorders ranging from cancer to Alzheimer's disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3β in leptin-deficient Lepob/ob mice and show that intracerebroventricular injection of a GSK3β inhibitor acutely improves glucose tolerance in these mice. The beneficial effect of the GSK3β inhibitor was dependent on hypothalamic signalling via PI3K (phosphoinositide 3-kinase), a key intracellular mediator of both leptin and insulin action. Conversely, neuron-specific overexpression of GSK3β in the mediobasal hypothalamus exacerbated the hyperphagia, obesity and impairment of glucose tolerance induced by a high-fat diet, while having little effect in controls fed standard chow. These results demonstrate that increased hypothalamic GSK3β signalling contributes to deleterious effects of leptin deficiency and exacerbates high-fat diet-induced weight gain and glucose intolerance.  相似文献   

13.
14.
15.
Single-chain peptides have been recently produced that display either mimetic or antagonistic properties against the insulin and IGF-1 (insulin-like growth factor 1) receptors. We have shown previously that the insulin mimetic peptide S597 leads to significant differences in receptor activation and initiation of downstream signalling cascades despite similar binding affinity and in vivo hypoglycaemic potency. It is still unclear how two ligands can initiate different signalling responses through the IR (insulin receptor). To investigate further how the activation of the IR by insulin and S597 differentially activates post-receptor signalling, we studied the gene expression profile in response to IR activation by either insulin or S597 using microarray technology. We found striking differences between the patterns induced by these two ligands. Most remarkable was that almost half of the genes differentially regulated by insulin and S597 were involved in cell proliferation and growth. Insulin either selectively regulated the expression of these genes or was a more potent regulator. Furthermore, we found that half of the differentially regulated genes interact with the genes involved with the MAPK (mitogen-activated protein kinase) pathway. These findings support our signalling results obtained previously and confirm that the main difference between S597 and insulin stimulation resides in the activation of the MAPK pathway. In conclusion, we show that insulin and S597 acting via the same receptor differentially affect gene expression in cells, resulting in a different mitogenicity of the two ligands, a finding which has critical therapeutic implications.  相似文献   

16.
The mouse Wnt family comprises at least 10 members sharing substantial amino acid identity with the secreted glycoprotein Wnt-1/int-1. Two of these, Wnt-1 and Wnt-3, are implicated in mouse mammary tumor virus-associated adenocarcinomas, although neither member is normally expressed in the mammary gland. These results suggest the presence of active cellular pathways which mediate the action of Wnt-1 and Wnt-3 signals. An understanding of the normal role of these signalling pathways is clearly necessary to comprehend the involvement of Wnt-1 and Wnt-3 in mammary tumorigenesis. We demonstrate here that five Wnt family members are expressed and differentially regulated in the normal mouse mammary gland. In addition, some of these genes are also expressed in both Wnt-1-responsive and nonresponsive mammary epithelial cell lines. We propose that Wnt-mediated signalling is involved in normal regulation of mammary development and that inappropriate expression of Wnt-1, Wnt-3, and possibly other family members can interfere with these signalling pathways.  相似文献   

17.
18.
Bone marrow mesenchymal stem/stromal cells (MSCs) maintain bone homeostasis and repair through the ability to expand in response to mitotic stimuli and differentiate into skeletal lineages. Signalling mechanisms that enable precise control of MSC function remain unclear. Here we report that by initially examining differences in signalling pathway expression profiles of individual MSC clones, we identified a previously unrecognised signalling mechanism regulated by epidermal growth factor (EGF) in primary human MSCs. We demonstrate that EGF is able to activate β-catenin, a key component of the canonical Wnt signalling pathway. EGF is able to induce nuclear translocation of β-catenin in human MSCs but does not drive expression of Wnt target genes or T cell factor (TCF) activity in MSC reporter cell lines. Using an efficient Design of Experiments (DoE) statistical analysis, with different combinations and concentrations of EGF and Wnt ligands, we were able to confirm that EGF does not influence the Wnt/β-catenin pathway in MSCs. We show that the effects of EGF on MSCs are temporally regulated to initiate early “classical” EGF signalling mechanisms (e.g via mitogen activated protein kinase) with delayed activation of β-catenin. By RNA-sequencing, we identified gene sets that were exclusively regulated by the EGF/β-catenin pathway, which were distinct from classical EGF-regulated genes. However, subsets of classical EGF gene targets were significantly influenced by EGF/β-catenin activation. These signalling pathways cooperate to enable EGF-mediated proliferation of MSCs by alleviating the suppression of cell cycle pathways induced by classical EGF signalling.  相似文献   

19.
20.
The pluripotent mouse embryonal carcinoma cell line P19 is widely used as a model for research on all-trans-retinoid acid (RA)-induced neuronal differentiation; however, the signaling pathways involved in this process remain unclear. This study aimed to reveal the molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells. Real-time quantitative polymerase chain reaction and Western blot analysis were used to determine the expression of neuronal-specific markers, whereas flow cytometry was used to analyze cell cycle and cell apoptosis. The expression profiles of messenger RNAs (mRNAs) in RA-induced neuronal differentiation of P19 cells were analyzed using high-throughput sequencing, and the functions of differentially expressed mRNAs (DEMs) were determined by bioinformatics analysis. RA induced an increase in both class III β-tubulin (TUBB3) and neurofilament medium (NEFM) mRNA expression, indicating that RA successfully induces neuronal differentiation of P19 cells. Cell apoptosis was not affected; however, cell proliferation decreased. We found 4117 DEMs, which were enriched in the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, Wnt signaling pathway, and cell cycle. Particularly, a few DEMs could be identified in the PI3K/Akt signaling pathway networks, such as PI3K, Akt, glycogen synthase kinase-3β (GSK3β), cyclin-dependent kinase 4 (CDK4), P21, and Bax. RA significantly increased the protein expression of PI3K, Akt, phosphorylated Akt, GSK3β, phosphorylated GSK3β, CDK4, and P21, but it reduced Bax protein expression. The Akt inhibitor affected the increase of TUBB3 and NEFM mRNA expression in RA-induced P19 cells. The molecular mechanism underlying the RA-induced neuronal differentiation of P19 cells is potentially involved in the PI3K/Akt/GSK3β signaling pathway. The decreased cell proliferation ability of neuronally differentiated P19 cells could be associated with the expression of cell cycle proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号