首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosylphosphatidylinositol (GPI) anchors are crucial for the survival of the intraerythrocytic stage Plasmodium falciparum because of their role in membrane anchoring of merozoite surface proteins involved in parasite invasion of erythrocytes. Recently, we showed that mannosamine can prevent the growth of P. falciparum by inhibiting the GPI biosynthesis. Here, we investigated the effect of isomeric amino sugars glucosamine, galactosamine, and their N-acetyl derivatives on parasite growth and GPI biosynthesis. Glucosamine, but not galactosamine, N-acetylglucosamine, and N-acetylgalactosamine inhibited the growth of the parasite in a dose-dependent manner. Glucosamine specifically arrested the maturation of trophozoites, a stage at which the parasite synthesizes all of its GPI anchor pool and had no effect during the parasite growth from rings to early trophozoites and from late trophozoites to schizonts and merozoites. An analysis of GPI intermediates formed when parasites incubated with glucosamine indicated that the sugar interferes with the inositol acylation of glucosamine-phosphatidylinositol (GlcN-PI) to form GlcN-(acyl)PI. Consistent with the non-inhibitory effect on parasite growth, galactosamine, N-acetylglucosamine, and N-acetylgalactosamine had no significant effect on the parasite GPI biosynthesis. The results indicate that the enzyme that transfers the fatty acyl moiety to inositol residue of GlcN-PI discriminates the configuration at C-4 of hexosamines. An analysis of GPIs formed in a cell-free system in the presence and absence of glucosamine suggests that the effect of the sugar is because of direct inhibition of the enzyme activity and not gene repression. Because the fatty acid acylation of inositol is an obligatory step for the addition of the first mannosyl residue during the biosynthesis of GPIs, our results offer a strategy for the development of novel anti-malarial drugs. Furthermore, this is the first study to report the specific inhibition of GPI inositol acylation by glucosamine in eukaryotes.  相似文献   

2.
The glycosylphosphatidylinositol (GPI) anchors of Plasmodium falciparum are thought to be etiologic agents of malaria based on their ability to induce proinflammatory cytokine production by macrophages and cause symptoms that resemble severe malaria illness in animals. This review summarizes the published information on the structures of P. falciparum GPIs, structure-activity relationship, and anti-GPI antibodies in the host.  相似文献   

3.
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.  相似文献   

4.
The substrate specificities of the early glycosylphosphatidylinositol biosynthetic enzymes of Plasmodium were determined using substrate analogues of D-GlcN(alpha)1-6-D-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol (GlcN-PI). Similarities between the Plasmodium and mammalian (HeLa) enzymes were observed. These are as follows: (i) The presence and orientation of the 2'-acetamido/amino and 3'-OH groups are essential for substrate recognition for the de-N-acetylase, inositol acyltransferase, and first mannosyltransferase enzymes. (ii) The 6'-OH group of the GlcN is dispensable for the de-N-acetylase, inositol acyltransferase, all four of the mannosyltransferases, and the ethanolamine phosphate transferase. (iii) The 4'-OH group of GlcNAc is not required for recognition, but substitution interferes with binding to the de-N-acetylase. The 4'-OH group of GlcN is essential for the inositol acyltransferase and first mannosyltransferase. (iv) The carbonyl group of the natural 2-O-hexadecanyl ester of GlcN-(acyl)PI is essential for substrate recognition by the first mannosyltransferase. However, several differences were also discovered: (i) Plasmodium-specific inhibition of the inositol acyltransferase was detected with GlcN-[L]-PI, while GlcN-(2-O-alkyl)PI weakly inhibited the first mannosyltransferase in a competitive manner. (ii) The Plasmodium de-N-acetylase can act on analogues containing N-benzoyl, GalNAc, or betaGlcNAc whereas the human enzyme cannot. Using the parasite specificity of the later two analogues with the known nonspecific de-N-acetylase suicide inhibitor [Smith, T. K., et al. (2001) EMBO J. 20, 3322-3332], GalNCONH(2)-PI and GlcNCONH(2)-beta-PI were designed and found to be potent (IC(50) approximately 0.2 microM), Plasmodium-specific suicide substrate inhibitors. These inhibitors could be potential lead compounds for the development of antimalaria drugs.  相似文献   

5.
A group of inactivators of cysteinyl proteinases which function by covalent bond formation have been examined for their ability to inhibit the development of Plasmodium falciparum within red blood cells. The most effective of these caused inactivation of the parasite near 10(-8) M concentration. The range of inhibitory action varied with peptide structure in a manner characteristic of affinity labels for proteinases suggesting that the target of inhibition was an unidentified proteinase, probably of the cysteinyl type, but different from cathepsins B and L.  相似文献   

6.
Telomerase activity in synchronized Plasmodium falciparum during its erythrocytic cycle was examined using the TRAP assay. Telomerase activity was detected at all stages of the parasite intraerythrocyte development, with higher activity in trophozoite and schizont stages compared with ring form. Berberine, extracted from Arcangelisia flava (L.) Merr., inhibited telomerase activity in a dose-dependent manner over a range of 30-300 microM, indicating that P. falciparum telomerase might be a potential target for future malaria chemotherapy.  相似文献   

7.
Secreted phospholipases A(2) (sPLA(2)s) from snake and insect venoms and from mammalian pancreas are structurally related enzymes that have been associated with several toxic, pathological, or physiological processes. We addressed the issue of whether toxic sPLA(2)s might exert specific effects on the Plasmodium falciparum intraerythrocytic development. We showed that both toxic and non-toxic sPLA(2)s are lethal to P. falciparum grown in vitro, with large discrepancies between respective IC(50) values; IC(50) values from toxic PLA(2)s ranged from 1.1 to 200 pm, and IC(50) values from non-toxic PLA(2)s ranged from 0.14 to 1 microm. Analysis of the molecular mechanisms responsible for cytotoxicity of bee venom PLA(2) (toxic) and hog pancreas PLA(2) (non-toxic) demonstrated that, in both cases, enzymatic hydrolysis of serum phospholipids present in the culture medium was responsible for parasite growth arrest. However, bee PLA(2)-lipolyzed serum induced stage-specific inhibition of P. falciparum development, whereas hog PLA(2)-lipolyzed serum killed parasites at either stage. Sensitivity to bee PLA(2)-treated serum appeared restricted to the 19-26-h period of the 48 h parasite cycle. Analysis of the respective role of the different lipoprotein classes as substrates of bee PLA(2) showed that enzyme treatment of high density lipoproteins, low density lipoproteins, and very low density lipoproteins/chylomicrons fractions induces cytotoxicity of either fraction. In conclusion, our results demonstrate that toxic and non-toxic PLA(2)s 1) are cytotoxic to P. falciparum via hydrolysis of lipoprotein phospholipids and 2) display different killing processes presumably involving lipoprotein by-products recognizing different targets on the infected red blood cell.  相似文献   

8.
Products of the isoprenoid metabolism were identified upon incubations of extracts from Plasmodium falciparum infected red blood cells with [14C] mevalonate. Uninfected erythrocytes and wild type yeast Saccharomyces cerevisiae extracts were used as controls. In parasitized red blood cells as well as in yeast extracts, mevalonate was converted into the biosynthetic isoprenoid precursors of sterol pathway until farnesyl pyrophosphate. In contrast, no mevalonate conversion was observed in uninfected erythrocyte extracts. The isoprenoid metabolism appeared stage-dependent as shown by the increase of radiolabelled farnesyl pyrophosphate amount at the beginning of the schizogonic phase (30-36 hours).  相似文献   

9.
The purpose of the present study was to confirm the effectiveness of saponin hemolysis for concentrating ring-infected erythrocytes in Plasmodium falciparum cultures and to determine the actual numbers of the enriched parasites, not just percentage parasitemia. This is important because various molecular biology and vaccine development against malaria require useable quantities of pure culture with minimal number of uninfected erythrocytes at all stages. Synchronized cultures of three P. falciparum strains were exposed to 0.015% isotonic saponin solution for 30 minutes on ice. They were centrifuged and the pellets were treated again with saponin solution for 3-7 minutes. Initially, most of the cultures contained approximately 10(10) erythrocytes and 1-7% parasitemia, but at the end of the enrichment up to 10(8) of erythrocytes containing 90-99.8% parasitemia were recovered (maximal enrichment). From microscopic examination of the cells it was calculated that the hemolysis rate of uninfected and infected erythrocytes was circa 27 to 1, which could account for the enrichment. Studies by other investigators have suggested that P. falciparum merozoite invasion decreases erythrocyte membrane lipids, and it has been reported that reduction of membrane cholesterol could make erythrocytes saponin-resistant. The possibility that merozoite invasion made erythrocytes partially resistant to saponin hemolysis was strengthened by the observation that the proportions of multiple infections increased significantly in the enriched cultures. However, mature asexual parasites could not be concentrated by this method, suggesting possible differences between the membranes of erythrocytes containing ring forms and those of trophozoites and schizonts. Ring-infected erythrocytes freshly from malaria patients could also not be concentrated by the method described here, suggesting that the ability to induce saponin resistance in erythrocytes was acquired by the parasites in vitro.  相似文献   

10.

Background  

Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed.  相似文献   

11.
Malarial parasites infecting mammalian hosts are considered to be homolactate fermentors at their asexual intraerythrocytic developmental stage; however, existing ultrastructural and biochemical evidence suggest that their acristate mitochondria could be involved in energy metabolism. In the present study, inhibitors of mitochondrial function including compounds which act on NADH and succinate dehydrogenases, electron transport and mitochondrial ATPase, as well as uncouplers, were found to inhibit the growth and propagation of the human parasite Plasmodium falciparum in in vitro cultures at concentrations that specifically affect mitochondrial functions. Direct measurement of parasite protein and nucleic acid synthesis in synchronized cultures showed that throughout the parasite life cycle both processes were inhibited, the latter process being more sensitive. These results strongly suggest that intraerythrocytic malarial parasites require mitochondrial energy production.  相似文献   

12.
13.
14.
15.
Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum.  相似文献   

16.
This study investigates protein glycosylation in the asexual intraerythrocytic stage of the malaria parasite, Plasmodium falciparum, and the presence in the infected erythrocyte of the respective precursors. In in vitro cultures, P. falciparum can be metabolically labeled with radioactive sugars, and its multiplication can be affected by glycosylation inhibitors, suggesting the capability of the parasite to perform protein-glycosylation reactions. Gel-filtration analysis of sugar-labeled malarial proteins before and after specific cleavage of N-glycans or O-glycans, respectively, revealed the majority of the protein-bound sugar label to be incorporated into O-glycans, but only little (7-12% of the glucosamine label) or no N-glycans were found. Analysis of the nucleotide sugar and sugar-phosphate fraction showed that radioactive galactose, glucosamine, fucose and ethanolamine were converted to their activated derivatives required for incorporation into protein. Mannose was mainly recovered as a bisphosphate, whereas the level of radiolabeled GDP-mannose was below the detection limit. The analysis of organic-solvent extracts of sugar-labeled cultures showed no evidence for the formation by the parasite of dolichol cycle intermediates, the dedicated precursors in protein N-glycosylation. Consistently, the amount of UDP-N-acetylglucosamine formed did not seem to be affected by the presence of tunicamycin in the culture. Oligosaccharyl-transferase activity was not detectable in a lysate of P. falciparum, using exogenous glycosyl donors and acceptors. Our studies show that O-glycosylation is the major form of protein glycosylation in intraerythrocytic P. falciparum, whereas there is little or no protein N-glycosylation. A part of these studies has been published in abstract form [Dieckmann-Schuppert, A., Hensel, J. and Schwarz, R. T. (1991) Biol. Chem. Hoppe-Seyler 372, 645].  相似文献   

17.
18.
《The Journal of cell biology》1995,130(6):1333-1344
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI- anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting for the absence of alpha-agglutinin from the cell wall after induction with a-factor at 37 degrees C. 10 recessive mutants were grouped into 6 complementation classes, gpi4 to gpi9. Mutants are considered to be deficient in the biosynthesis of GPI anchors, since each mutant accumulates an abnormal, incomplete GPI glycolipid containing either zero, two, or four mannoses. One mutant accumulates a complete precursor glycolipid, suggesting that it might be deficient in the transfer of complete precursor lipids to proteins. When labeled with [2- 3H]inositol, mutants accumulate reduced amounts of radiolabeled GPI- anchored proteins, and the export of the GPI-anchored Gas1p out of the ER is severely delayed in several mutant strains. On the other hand, invertase and acid phosphatase are secreted by all but one mutant. All mutants show an increased sensitivity to calcofluor white and hygromycin B. This suggests that GPI-anchored proteins are required for the integrity of the yeast cell wall.  相似文献   

19.
Malaria is clinically manifested only when the human malaria parasites in the genus Plasmodium enter the obligatory intraerythrocytic life cycle. Elucidation for the roles of the serum, the key nutrient, and its components is then deemed essential for thorough understanding of the proliferation of Plasmodium cells at the erythrocytic stage. Fractionation and analysis of serum and its components was performed by chromatography, solvent extraction, and subsequent reconstitution experiments. Only fractions containing serum albumin (SA) from the serum and purified intact bovine serum albumin (BSA) showed comparable growth promoting activity with human serum (HS). Delipidated BSA can only effect parasite growth after reconstitution with lipids extracted from intact BSA. Fatty acid (FA) species in the neutral lipid fraction from intact BSA proved likewise when reconstituted with delipidated BSA. Furthermore, the involved FA species have to come in a pair of one saturated and one unsaturated, with palmitic and oleic acids as the best combination. The results were further substantiated by morphological analysis as well as biochemical analysis of the DNA synthesis during the intraerythrocytic development. This study can be a basis to explore the molecular mechanism of lipid traffic within the parasitized red blood cell (RBC), which can be an important adjunct to the development of drugs for malaria therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号