首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a new isolate of Pseudomonas aeruginosa, we obtained 7 g cell dry wt (CDW/l) using 5 % (w/v) glucose. Crude polyhydroxyalkanoates were obtained at 14.6 % of CDW. FTIR and NMR analysis confirmed that this was a new co-polymer: 3-hydroxyvalerate-co-5-hydroxydecenoate. Differential scanning calorimetry analysis showed two different melting temperatures of the copolymer and also indicated the glass transition temperature to be 4 °C. The polydispersity index of the polymer was 1.059.  相似文献   

2.
An optimal medium for exopolysaccharides (EPS) production was obtained through one-factor-at-a-time method and response surface methodology. Under optimal culture medium, the maximum EPS concentration in shake flask was 5.16 g/l. Two groups of EPSs (designated as Fr-I and Fr-II) were obtained from the culture filtrates by size exclusion chromatography/multiangle laser light scattering, and the weight average molar masses (M w) of Fr-I and Fr-II were determined to be 4.098 × 104 and 1.114 × 104 g/mol, respectively. The molecular confirmation of Fr-I was revealed to be a rigid rod form in aqueous solution. Moreover, monosaccharide composition and characteristic groups were investigated by GC and Fourier transform infrared, respectively. Finally, pharmacology experiment in vitro indicated EPS Fr-II of Pleurotus eryngii exhibited higher antioxidant and antitumor abilities than Fr-I, which might be attributed to the different molecular weights and chemical compositions in the EPS fraction.  相似文献   

3.
Sialidases (neuraminidases, EC 3.2.1.18) are widely distributed in biological systems but there are only scarce data on its production by filamentous fungi. The aim of this study was to obtain information about sialidase distribution in filamentous fungi from non-clinical isolates, to determine availability of sialidase gene, and to select a perspective producer. A total of 113 fungal strains belonging to Ascomycota and Zygomycota compassing 21 genera and 51 species were screened. Among them, 77 strains (11 orders, 14 families and 16 genera) were able to synthesize sialidase. Present data showed a habitat-dependent variation of sialidase activity between species and within species, depending on location. Sialidase gene was identified in sialidase-positive and sialidase-negative strains. .Among three perspective strains, the best producer was chosen based on their sialidase production depending on type of cultivation, medium composition, and growth temperature. The selected P. griseofulvum Р29 was cultivated in 3L bioreactor at 20 °C on medium supplemented with 0.5% milk whey. The results demonstrated better growth and 2.3-fold higher maximum enzyme activity compared to the shaken flask cultures. Moreover, the early occurring maximum (48 h) is an important prerequisite for future up scaling of the process.  相似文献   

4.
The present study is the first report on the ability of Geobacter sulfurreducens PCA to reduce Pd(II) and produce Pd(0) nano-catalyst, using acetate as electron donor at neutral pH (7.0?±?0.1) and 30 °C. The microbial production of Pd(0) nanoparticles (NPs) was greatly enhanced by the presence of the redox mediator, anthraquinone-2,6-disulfonate (AQDS) when compared with controls lacking AQDS and cell-free controls. A cell dry weight (CDW) concentration of 800 mg/L provided a larger surface area for Pd(0) NPs deposition than a CDW concentration of 400 mg/L. Sample analysis by transmission electron microscopy revealed the formation of extracellular Pd(0) NPs ranging from 5 to 15 nm and X-ray diffraction confirmed the Pd(0) nature of the nano-catalyst produced. The present findings open the possibility for a new alternative to synthesize Pd(0) nano-catalyst and the potential application for microbial metal recovery from metal-containing waste streams.  相似文献   

5.
This study was focused on a comparison of growth and production properties of seven red yeast strains of the genus Rhodotorula, Sporobolomyces and Cystofilobasidium cultivated on glycerol substrate. Production of enriched yeast biomas and specific yeast metabolites (carotenoids, ergosterol, lipids) was evaluated on medium with glucose, pure technical glycerol and/or waste glycerol from biofuel production (40 g/L) and mixture of glycerol and glucose (1:3, 1:1, 3:1; C/N ratio 57 in all cultivations). All tested strains were able to utilize glycerol as the only carbon source. Production of biomass on waste glycerol was in most strains higher than in control as well as in medium with pure technical glycerol and reached 15.97–21.76 g/L. Production of carotenoids and ergosterol was better in glucose medium than in medium with glycerol only. Nevertheless, using glycerol medium with addition of glucose, higher yields of total carotenoids, beta-carotene and ergosterol were obtained than in control. The highest yields of total pigments were reached by Sporobolomyces roseus (3.60 mg/g cell dry weight (CDW); glycerol:glucose 1:3), Sporobolomyces salmonicolor (2.85 mg/g CDW; glycerol:glucose 1:3) and Rhodotorula glutinis (2.80 mg/g CDW; glycerol:glucose 3:1) In glucose medium, most tested strains except Cystofilobasidium capitatum (22.6 %) produced neutral lipids in the range of 11–15 %. Production of triacylglycerols in all strains was in 10–30 % better in glycerol medium, in which Rhodotorula aurantiaca and Sporobolomyces shibatanus also reached intracellular triacylglycerol concentrations up to 20 % of biomass. This study has shown that oleaginous red yeasts could have great potential for converting crude glycerol to valuable lipids and carotenoids in respect of efficient bioresources utilization.  相似文献   

6.
Bio-based succinic acid production from lignocellulosic biomass is one of the attractive and prominent alternative technologies to overcome issues associated with the utilization of fossil sources. In this context, it is necessary to find new microorganisms that are able to efficiently ferment this recalcitrant feedstock. The ecological approach developed in this study enabled the isolation of Basfia succiniciproducens BPP7 from a complex rumen ecosystem. This new wild-type strain was able to synthesize up to 6.06 ± 0.05 g/L of succinate (corresponding to 0.84 ± 0.017 g of succinate per gram of consumed glucose + xylose and to 0.14 ± 0.001 g of succinate per gram of glucans + xylans present in the biomass before hydrolysis) from Arundo donax hydrolysate in separate hydrolysis and fermentation (SHF) experiments. Higher titers of succinic acid were obtained through the optimization of growth conditions. The optimal medium composition identified on the smaller scale was then used for 2.5-L batch experiments, which used A. donax hydrolysate and yeast extract as the main C and N sources, respectively. A maximal titer of 9.4 ± 0.4 g/L of succinic acid was obtained after 24 h. The overall results clearly demonstrate the potential of B. succiniciproducens BPP7 for succinate production.  相似文献   

7.
Stevia rebaudiana (S. rebaudiana) is the most important therapeutic plant species and has been accepted as such worldwide. It has a tendency to accumulate steviol glycosides, which are 300 times sweeter than marketable sugar. Recently, diabetic patients commonly use this plant as a sugar substitute for sweet taste. In the present study, the effects of different spectral lights were investigated on biomass accumulation and production of secondary metabolites in adventitious root cultures of S. rebaudiana. For callus development, leaf explants were excised from seed-derived plantlets and inoculated on a Murashige and Skoog (MS) medium containing the combination of 2,4-dichlorophenoxy acetic acid (2, 4-D, 2.0 mg/l) and 6-benzyladenine (BA, 2.0 mg/l), while 0.5 mg/l naphthalene acetic acid (NAA) was used for adventitious root culture. Adventitious root cultures were exposed to different spectral lights (blue, green, violet, red and yellow) for a 30-day period. White light was used as control. The growth kinetics was studied for 30 days with 3-day intervals. In this study, the violet light showed the maximum accumulation of fresh biomass (2.495 g/flask) as compared to control (1.63 g/flask), while red light showed growth inhibition (1.025 g/flask) as compared to control. The blue light enhanced the highest accumulation of phenolic content (TPC; 6.56 mg GAE/g DW), total phenolic production (TPP; 101 mg/flask) as compared to control (5.44 mg GAE/g DW; 82.2 mg GAE/g DW), and exhibited a strong correlation with dry biomass. Blue light also improved the accumulation of total flavonoid content (TFC; 4.33 mg RE/g DW) and total flavonoid production (TFP; 65 mg/flask) as compared to control. The violet light showed the highest DPPH inhibition (79.72%), while the lowest antioxidant activity was observed for control roots (73.81%). Hence, we concluded that the application of spectral lights is an auspicious strategy for the enhancement of the required antioxidant secondary metabolites in adventitious root cultures of S. rebaudiana and of other medicinal plants.  相似文献   

8.
Burkholderia sp. F24, originally isolated from soil, was capable of growth on xylose and removed organic inhibitors present in a hemicellulosic hydrolysate and simultaneously produced poly-3-hydroxybutyrate (P3HB). Using non-detoxified hydrolysate, Burkholderia sp. F24 reached a cell dry weight (CDW) of 6.8 g L?1, containing 48 % of P3HB and exhibited a volumetric productivity (PP3HB) of 0.10 g L?1 h?1. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate copolymers (P3HB-co-3HV) were produced using xylose and levulinic acid (LA) as carbon sources. In shake flask cultures, the 3HV content in the copolymer increased from 9 to 43 mol% by adding LA from 1.0 to 5.0 g L?1. In high cell density cultivation using concentrated hemicellulosic hydrolysate F24 reached 25.04 g L?1 of CDW containing 49 % of P3HB and PP3HB of 0.28 g L?1 h?1. Based on these findings, second-generation ethanol and bioplastics from sugarcane bagasse is proposed.  相似文献   

9.
Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p < 0.05). The hexane extract inhibited the brain cell line (U-87 MG) with an IC50 of 50 μg/ml and significantly promoted cell apoptosis through the mitochondrial pathway and DNA fragmentation p < 0.001. The ethanol extract demonstrated potent antioxidants; DPPH, FRAP, and ABTS with an IC50 value of 52, 48.5 and 64.7 μg/ml, respectively. In addition, the hexane and ethyl acetate extract significantly (p < 0.001) inhibited the sprouting of microvessels by 100% and 81.2%, at 100 μg/ml, respectively. The GC analysis of the most active extract (hexane) showed the presence of several potent phytochemicals such as stigmasterol, beta-Sitosterol, squalene, lupeol, octadecadienoic acid, and oleic acid.  相似文献   

10.
Escherichia coli MG1655 (DE3) with the ability to synthesize butanol from glycerol was constructed by metabolic engineering. The genes thil, adhe2, bcs operon (crt, bcd, etfB, etfA, and hbd) were cloned into the plasmid vectors, pETDuet-1 and pACYCDuet-1, then the two resulting plasmids, pACYC-thl-bcs and pET-adhe2, were transferred to E. coli, and the recombinant strain was able to synthesize up to 18.5 mg/L butanol on a glycerol-containing medium. After the glycerol transport protein gene GlpF was expressed, the butanol production was improved to 22.7 mg/L. The competing pathway of byproducts, such as ethanol, succinate, and lactate, was subsequently deleted to improve the 1-butanol production to 97.9 mg/L. Moreover, a NADH regeneration system was introduced into the E. coli, and finally a 154.0 mg/L butanol titer was achieved in a laboratory-scale shake-flask experiment.  相似文献   

11.
The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l?1 caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h?1, maximum degradation rate of 1.1 g h?1, and caffeine demethylase activity of 18,762 U g CDW?1 (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l?1) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R 2 = 0.94), Luong (R 2 = 0.92), and Yano and Koga 2 (R 2 = 0.94) models were found to be the best. The Luedeking–Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.  相似文献   

12.
Sclerodermatoid fungi basidiomes were collected from northern Thailand and pure cultures were isolated. The morphology and molecular characteristics identified them as Astraeus odoratus, Phlebopus portentosus, Pisolithus albus and Scleroderma sinnamariense. This study investigated the in vitro ability of selected fungi to produce indole-3-acetic acid (IAA), to solubilize different toxic metal (Co, Cd, Cu, Pb, Zn)-containing minerals, and metal tolerance. The results indicated that all fungi are able to produce IAA in liquid medium. The optimum temperature for IAA production of all fungi was 30 °C, and the optimum concentration of L-tryptophan of Astraeus odoratus, Pisolithus albus and Scleroderma sinnamariense was 2 mg ml?1. The highest IAA yield (65.29?±?1.17 μg ml?1) was obtained from Phlebopus portentosus after 40 days of cultivation in culture medium supplemented with 4 mg ml?1 of L-tryptophan. The biological activity tests of fungal IAA showed that it can simulate coleoptile elongation, and increase seed germination and root length of tested plants. In addition, the metal tolerance and solubilizing activities varied for different minerals and fungal species. The presence of metal minerals affected fungal growth, and cobalt carbonate showed the highest toxicity. The solubilization index decreased when the concentration of metal minerals increased. Astraeus odoratus showed the lowest tolerance to metals. This is the first report of in vitro IAA production, solubilization of insoluble metal minerals and metal tolerance abilities of the tested fungi.  相似文献   

13.
The accumulation of triacylglycerols (TAG) is a common feature among actinobacteria belonging to Rhodococcus genus. Some rhodococcal species are able to produce significant amounts of those lipids from different single substrates, such as glucose, gluconate or hexadecane. In this study we analyzed the ability of different species to produce lipids from olive oil mill wastes (OMW), and the possibility to enhance lipid production by genetic engineering. OMW base medium prepared from alperujo, which exhibited high values of chemical oxygen demand (127,000 mg/l) and C/N ratio (508), supported good growth and TAG production by some rhodococci. R. opacus, R. wratislaviensis and R. jostii were more efficient at producing cell biomass (2.2–2.7 g/l) and lipids (77–83% of CDW, 1.8–2.2 g/l) from OMW than R. fascians, R. erythropolis and R. equi (1.1–1.6 g/l of cell biomass and 7.1–14.0% of CDW, 0.1–0.2 g/l of lipids). Overexpression of a gene coding for a fatty acid importer in R. jostii RHA1 promoted an increase of 2.2 fold of cellular biomass value with a concomitant increase in lipids production during cultivation of cells in OMW. This study demonstrates that the bioconversion of OMW to microbial lipids is feasible using more robust rhodococal strains. The efficiency of this bioconversion can be significantly enhanced by engineering strategies.  相似文献   

14.
Aflatoxin B1 (AFB1) is a carcinogenic metabolite produced by certain Aspergillus species such as A. parasiticus and A. flavus. The beneficial properties of bee pollen have transformed this commodity into an increasingly frequent component of the human diet. As bee pollen is a substrate on which aflatoxigenic fungi can grow, AFB1 production is likely. In the present study, we describe a method for aflatoxin B1 determination in bee pollen utilising high pressure liquid chromatography (HPLC) with a fluorescence detector (FD). The recovery factor of the method was found to be 111% (RSD% 1.61), while the detection limit (LOD) was 0.08 ng AFB1/g. An additional aim of this study was to investigate the growth of A. parasiticus and AFB1 production in bee pollen. Results indicated that no mycelial growth was observed and no AFB1 was detected in bee pollen samples containing natural microbiota throughout the entire observation period (20 days). In contrast, AFB1 production in treated bee pollen samples (15 g pollen/flask) inoculated with A. parasiticus was significantly higher (p?≤?0.05) compared to control samples (treated but not inoculated) throughout the entire incubation period, while no mycelial growth was apparent. Maximum production was observed on the 12th day (79.29 ng AFB1/flask and 32.44 ng AFB1/flask for inoculated and non-inoculated bee pollen, respectively). As a result, AFB1 production in bee pollen is likely even following a minor contamination, which could occur randomly.  相似文献   

15.
The production of triacylglycerols (TAG) or wax esters (WS) seems to be a widespread feature among extremophile bacteria living in high-altitude Andean Lakes (HAAL), Argentina. Twelve out of twenty bacterial strains isolated from HAAL were able to produce TAG or WS (between 2 and 17 % of cellular dry weight) under nitrogen-limiting culture conditions. Among these strains, the extremophile Rhodococcus sp. A5 accumulated significant amounts of TAG during growth on glucose (17 %, CDW) and hexadecane (32 %, CDW) as sole carbon sources. The role of accumulated TAG in the response to carbon starvation, osmotic stress, UV-radiation and desiccation was investigated in Rhodococcus sp. A5 using an inhibitor of TAG degradation. Cells degraded TAG during these stresses in the absence of the inhibitor. The inhibition of TAG mobilization affected cell survival during osmotic stress only during the initial growth stage. Little or no surviving cells were observed after carbon starvation, UV-treatment and desiccation, when TAG mobilization was inhibited. These results suggested that TAG metabolism is relevant for the adaptation and survival of A5 cells under carbon starvation, osmotic stress and UV irradiation, and essential under desiccation conditions, which prevail in HAAL environments.  相似文献   

16.
In this study, the effects of several key factors to increase spore production by Bacillus subtilis subsp. KATMIRA 1933 were evaluated in shake flask experiments. In a synthetic medium, glucose concentration played a crucial role in the expression of bacilli sporulation capacity. In particular, maximum spore yield (2.3 × 109 spores/mL) was achieved at low glucose concentration (2 g/L), and further gradual increase of the carbon source content in the medium caused a decrease in sporulation capacity. Substitution of glucose with several inexpensive lignocellulosic materials was found to be a reasonable way to achieve high cell density and sporulation. Of the materials tested, milled mandarin peels at a concentration of 40 g/L served as the best growth substrate. In these conditions, bacilli secreted sufficient levels of glycosyl hydrolases, providing slow hydrolysis of the mandarin peel’s polysaccharides to metabolizable sugars, providing the bacterial culture with an adequate carbon and energy source. Among nitrogen sources tested, peptone was found to favor spore production. Moreover, it was shown that cheese and cottage cheese whey usage, instead of distilled water, significantly increases spore formation. After optimization of the nutrient medium in the shake flask experiments, the technical feasibility of large-scale spore production by B. subtilis KATMIRA 1933 was confirmed in a laboratory fermenter. The spore yield (7 × 1010 spores/mL) obtained using a bioreactor was higher than those previously reported.  相似文献   

17.
In order to increase nisin production in a cost-effective manner, non-nutritional factors as well as nutritional parameters must be optimized. In this study, optimization of the most important non-nutritional factors for nisin production using orthogonal array method was performed. Optimization of temperature, agitation, age and size of inoculum, medium initial pH value and flask volume/medium volume ratio in de Man, Rogosa and Sharpe (MRS) medium in batch fermentation was accomplished. Nisin was produced by Lactococcus lactis subsp. lactis PTCC 1336 and measured by bioassay method using Micrococcus luteus PTCC 1169 as the nisin-sensitive strain. The optimum levels of non-nutritional factors for maximum nisin production and productivity were obtained as: flask volume/medium volume ratio: 5.00, medium initial pH value: 8.00, inoculum size: 1%, inoculum age: 24 h old (A = 1.7), agitation: 100 rpm and temperature: 27 °C. Under the optimized conditions, maximum nisin production and maximum nisin productivity were 599.70 IU/mL and 37.48 IU/mL/h, respectively.  相似文献   

18.
In this study, after screening of eight fungal strains for their ability to produce calcium malate, it was found that Penicillium viticola 152 isolated from marine algae among them could produce the highest titer of calcium malate. At the same time, it was found that corn steep liquor (CSL) could stimulate calcium malate production and 0.5 % (v/v) CSL was the most suitable for calcium malate production. Under the optimal conditions, a titer of calcium malate in the supernatant was 132 g/l at flask level. During a 10-l fermentation, a titer of 168 g/l, a yield of 1.28 g/g of glucose, and a productivity of 1.75 g/l/h were reached within 96 h of the fermentation, and 93.4 % of the sugar was used for calcium malate production and cell growth, demonstrating that the titer, yield, and productivity of calcium malate by this fungal strain were very high and the fermentation period was very short. After analysis of the partially purified product with high-performance liquid chromatography, it was found that the main product was calcium malate. The results demonstrated that P. viticola 152 obtained in this study was the most suitable for developing a novel one-step fermentation process for calcium malate production from glucose on a large scale.  相似文献   

19.
The focus of the study was to investigate antioxidant activity and characterize antioxidant peptides from oyster (Saccostrea cucullata) protein hydrolysate. The protease hydrolysate of oyster exhibited strong potential to donate hydrogen and was able to scavenge Hydrogen peroxide, Hydroxyl and DPPH radicals. Due to the high antioxidant potential, hydrolysate was purified in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally seven antioxidant peptides were collected. Among seven peptides (SCAP 1–7), three peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW = 515.29 Da), Pro-Ser-Leu-Val-Gly-Arg-Pro–Pro-Val-Gly-Lys-Leu-Thr-Leu (MW = 1,432.89 Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW = 1,145.75 Da), respectively. The oyster hydrolysate was tested for cell cytotoxicity on Vero (kidney epithelial cells of the African Green Monkey) and HT-29 (human colon carcinoma) cell lines. It was found that the hydrolysate did not show any cytotoxic effect for Vero cell lines and exerted a significant cytotoxic effect on HT-29 cell lines. We thus conclude that the anticancer and antioxidative hydrolysate from oyster (S. cucullata) may be useful ingredients in food and nutraceutical applications.  相似文献   

20.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号