首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Fourier Transform infrared (FTIR) spectroscopy can be used to identify microorganisms. This study describes the influence of culture conditions on FTIR spectra and the discrimination of Lactobacillus species found in breweries. Fifty three Lactobacillus strains were analysed by FTIR spectroscopy and identification at the species level was correct for 94% of the strains, and at the strain level for 91% of the strains.  相似文献   

2.
Candida glabrata has emerged as one of the leading agents of fungal infections and strain typing is essential for epidemiological investigation that is generally achieved by molecular techniques. In this work, we studied twenty-nine C. glabrata strains isolated from different patients, using a phenotypic approach based on Fourier Transform Infrared (FTIR) spectroscopy, which has been in a previous study successfully applied as a rapid typing method for Candida albicans. A two-step procedure was used for the analysis. The first step included sixteen strains for the internal validation phase, which aimed at finding the spectral windows that would provide the best differentiation between strains. In this phase, hierarchical cluster analysis (HCA) carried out using three spectral windows (900-1200, 1540-1800, 2800-3000 cm(-1)) allowed to obtain the best classification, where each patient strains could be clustered together. A genotypic technique based on randomly amplified polymorphic DNA-analysis (RAPD) confirmed these results. In a second step, the external validation phase, thirteen other clinical strains of C. glabrata isolated from multiple sites in four ICU patients, were tested by FTIR spectroscopy. The analysis was based on the spectral regions previously found in the first step. HCA classification of the strains gave four groups, one group per patient. These results suggest that no inter-human transmission took place. This study shows the potential of FTIR approach for typing of C. glabrata with several advantages compared to other techniques. FTIR typing is fast, effective, and reagent free. Moreover, it is applicable to all micro-organisms and requires a small quantity of biomass.  相似文献   

3.
Candida glabrata has emerged as one of the leading agents of fungal infections and strain typing is essential for epidemiological investigation that is generally achieved by molecular techniques. In this work, we studied twenty-nine C. glabrata strains isolated from different patients, using a phenotypic approach based on Fourier Transform Infrared (FTIR) spectroscopy, which has been in a previous study successfully applied as a rapid typing method for Candida albicans. A two-step procedure was used for the analysis. The first step included sixteen strains for the internal validation phase, which aimed at finding the spectral windows that would provide the best differentiation between strains. In this phase, hierarchical cluster analysis (HCA) carried out using three spectral windows (900–1200, 1540–1800, 2800–3000 cm 1) allowed to obtain the best classification, where each patient strains could be clustered together. A genotypic technique based on randomly amplified polymorphic DNA-analysis (RAPD) confirmed these results. In a second step, the external validation phase, thirteen other clinical strains of C. glabrata isolated from multiple sites in four ICU patients, were tested by FTIR spectroscopy. The analysis was based on the spectral regions previously found in the first step. HCA classification of the strains gave four groups, one group per patient. These results suggest that no inter-human transmission took place. This study shows the potential of FTIR approach for typing of C. glabrata with several advantages compared to other techniques. FTIR typing is fast, effective, and reagent free. Moreover, it is applicable to all micro-organisms and requires a small quantity of biomass.  相似文献   

4.
Aims: To establish an identification system for probiotic Saccharomyces cerevisiae strains based on artificial neural network (ANN)–assisted Fourier‐transform infrared (FTIR) spectroscopy to improve quality control of animal feed. Methods and Results: The ANN‐based system for differentiating environmental from probiotic S. cerevisiae strains comprises five authorized feed additive strains plus environmental strains isolated from different habitats. A total of 108 isolates were used as reference strains to create the ANN. DHPLC analysis and δ‐PCR were used as reference methods to type probiotic yeast isolates. The performance of the FTIR‐ANN was tested in an internal validation using unknown spectra of each reference strain. This validation step yielded a classification rate of 99·1 %. For an external validation, a test data set comprising 965 spectra of 63 probiotic and environmental S. cerevisiae isolates unknown to the ANN was used, resulting in a classification rate of 98·2 %. Conclusions: Our results demonstrate that probiotic S. cerevisiae strains in feed can be differentiated successfully from environmental isolates using both genotypic approaches and ANN‐based FTIR spectroscopy. Significance and Impact of the Study: FTIR‐based artificial neural network analysis provides a rapid and inexpensive technique for yeast identification both at the species and at the strain level in routine diagnostic laboratories, using a single sample preparation.  相似文献   

5.
Differentiation of the species within the genus Listeria is important for the food industry but only a few reliable methods are available so far. While a number of studies have used Fourier transform infrared (FTIR) spectroscopy to identify bacteria, the extraction of complex pattern information from the infrared spectra remains difficult. Here, we apply artificial neural network technology (ANN), which is an advanced multivariate data-processing method of pattern analysis, to identify Listeria infrared spectra at the species level. A hierarchical classification system based on ANN analysis for Listeria FTIR spectra was created, based on a comprehensive reference spectral database including 243 well-defined reference strains of Listeria monocytogenes, L. innocua, L. ivanovii, L. seeligeri, and L. welshimeri. In parallel, a univariate FTIR identification model was developed. To evaluate the potentials of these models, a set of 277 isolates of diverse geographical origins, but not included in the reference database, were assembled and used as an independent external validation for species discrimination. Univariate FTIR analysis allowed the correct identification of 85.2% of all strains and of 93% of the L. monocytogenes strains. ANN-based analysis enhanced differentiation success to 96% for all Listeria species, including a success rate of 99.2% for correct L. monocytogenes identification. The identity of the 277-strain test set was also determined with the standard phenotypical API Listeria system. This kit was able to identify 88% of the test isolates and 93% of L. monocytogenes strains. These results demonstrate the high reliability and strong potential of ANN-based FTIR spectrum analysis for identification of the five Listeria species under investigation. Starting from a pure culture, this technique allows the cost-efficient and rapid identification of Listeria species within 25 h and is suitable for use in a routine food microbiological laboratory.  相似文献   

6.
Vibrational spectroscopy has long been used in bacterial identification with different levels of taxonomic discrimination but its true potential for intra‐species differentiation remains poorly explored. Herein, both transmission Fourier‐transform infrared (FTIR) and attenuated total reflectance (ATR)‐FTIR spectroscopy are used to analyse E. coli strains that differ solely in their porin expression profile. In this previously unreported approach, the applicability of both FTIR‐spectroscopy techniques is compared with the same collection of unique strains. ATR‐FTIR spectroscopy proved to reliably distinguish between several E. coli porin mutants with an accuracy not replicated by FTIR in transmission mode (using previously optimized procedures). Further studies should allow the identification of the individual contribution of the single porin channel to the overall bacterial infrared spectrum and of molecular predictive patterns of porin alterations. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Rapid identification of Candida species by FT-IR microspectroscopy   总被引:2,自引:0,他引:2  
Due to the continuous increase of human candidiasis and the great diversity of yeasts of the Candida genera, it is indispensable to identify this yeast as early as possible. Early identification enables an early diagnostic and patient-adapted anti-fungal therapy, thus reducing morbidity and mortality related to these infections. In view of this, we have in this study investigated microcolonies using a method based on Fourier transform-infrared microspectroscopy (FTIRM) for a rapid and early identification of the most frequent Candida species encountered in human pathology. FTIR spectroscopy is a whole-cell "fingerprinting" method by which microorganisms can be identified. By exploiting the huge discriminating capacity of this technique, we identified 6 species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida kefyr) from a collection of 57 clinical strains of Candida, isolated from hospitalised patients. Data obtained on 10- to 18-h-old microcolonies were compared to cultures of 24 h. Our results clearly show the efficiency and the robustness of FTIR (micro)spectroscopy in identifying species with a classification rate of 100% for both microcolonies and 24-h cultures. FTIR microspectroscopy is thus a promising clinical approach, because compared to conventional and molecular techniques, it is time and money saving, has great identification and discriminating potentials, and is amenable to an automated high-throughput routine system.  相似文献   

8.
Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification.  相似文献   

9.
A computer-assisted probabilistic identification technique was developed to identify species of the genus Bacillus known to be potentially pathogenic and/or frequently found as contaminants in pharmaceutical preparations. An identification matrix on 18 species of the genus Bacillus was constructed. Twenty-four biochemical tests were used. The reaction profile of each species was quantified in probability terms and called up on a computer. The computer method was used on 30 test cultures. In each case, the most likely identification, according to the computer method, was the species to which the strain had already been assigned. In 29 of the 30 cases, the identification was with a probability level of one; in seven of these, however, more than one species tied for first choice. Only one strain was identified with a lower level of probability. The technique developed is comparatively easy to use and would seem to constitute a useful diagnostic tool within the pharmaceutical field.  相似文献   

10.
Bacteriorhodopsin (bR) is a light-driven proton pump whose function includes two key membrane-based processes, active transport and energy transduction. Despite extensive research on bR and other membrane proteins, these processes are not fully understood on the molecular level. In the past ten years, the introduction of Fourier transform infrared (FTIR) difference spectroscopy along with related techniques including time-resolved FTIR difference spectroscopy, polarized FTIR, and attenuated total reflection FTIR has provided a new approach for studying these processes. A key step has been the utilization of site-directed mutagenesis to assign bands in the FTIR difference spectrum to the vibrations of individual amino acid residues. On this basis, detailed information has been obtained about structural changes involving the retinylidene chromophore and protein during the bR photocycle. This includes a determination of the protonation state of the four membrane-embedded Asp residues, identification of specific structurally active amino acid residues, and the detection of protein secondary structural changes. This information is being used to develop an increasingly detailed picture of the bR proton pump mechanism.  相似文献   

11.
Here we used a multigene sequencing approach for the identification and molecular typing of environmental mycobacteria of the fast-growing subgroup. Strains were isolated from hemodialysis water and clinical samples. Eleven type strains of related species of the genus were also included in this study. To gain further insight into the diversity of the environmental mycobacteria, we analyzed several housekeeping genes (16S rRNA, ITS1, gyrB, hsp65, recA, rpoB, and sodA). No individual phylogenetic tree allowed good discrimination of all of the species studied. However, a concatenated and a consensus analysis, combining the genes, allowed better discrimination of each strain to the species level, and the increase in sequence size also led to greater tree robustness. This approach is useful not only for the discrimination and identification of environmental mycobacteria but also for their molecular typing and studies of population genetics. Our results demonstrate high genetic diversity among the isolates obtained, which are probably new species of the genus.  相似文献   

12.
F Korn-Wendisch  J Schneider 《Gene》1992,115(1-2):243-247
A total of 905 strains of several genera of the Actinomycetales were tested in respect to their sensitivity to genus- and species-specific actinophages. The results provided clear evidence that phage typing is a useful aid for the identification of actinomycetes. At the genus level, the specificity of actinophages has led to the correct placement of falsely identified strains, as well as to the rearrangement of genera. At the species level, however, phage typing has been less successful: only some actinophages are available so far, lysing strains (often not all) of one or a few related species (synonyms), e.g., of the genera Streptomyces and Amycolatopsis, as well as Saccharopolyspora.  相似文献   

13.
Since the 1930s, traditional methods of strain identification based on serotyping and phage typing have been the foundation of salmonella epidemiology. Although the incidence of diseases such as typhoid and paratyphoid has decreased in recent years, food-poisoning caused by non-typhoidal salmonella strains has now reached epidemic proportions in many countries, despite improvements in sanitation and hygiene. Precise strain identification is an essential prerequisite for epidemiological investigations aimed at combating the spread of these strains and eradicating the sources of infection. Modern methods of genotypic typing, particularly those based on physical characterization of the plasmid content of the organism have already proved invaluable for the identification and differentiation of strains in many outbreaks. These plasmid typing methods are now increasingly used with serotyping and phage typing for many epidemiological investigations. Other methods of genotypic typing, particularly those based on recognition of small differences in chromosome structure, are not yet practical for the examination of large numbers of strains. Nevertheless, improvements in small-scale methods for chromosomal DNA extraction coupled with the increasing use of non-isotopic labels for identification of restriction fragment length polymorphisms may provide a new dimension to Salmonella epidemiology.  相似文献   

14.
Fourier transform infrared spectroscopy (FT-IR) has been used together with pattern recognition methodology to study isolates belonging to the species Campylobacter coli and Campylobacter jejuni and to compare FT-IR typing schemes with established genomic profiles based on enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Seventeen isolates were cultivated under standardized conditions for 2, 3, and 4 days to study variability and improve reproducibility. ERIC-PCR profiles and FT-IR spectra were obtained from strains belonging to the species Campylobacter coli and C. jejuni, normalized, and explored by hierarchical clustering and stepwise discriminant analysis. Strains could be differentiated by using mainly the first-derivative FT-IR spectral range, 1,200 to 900 cm(-1) (described as the carbohydrate region). The reproducibility index varied depending on the ages of the cultures and on the spectral ranges investigated. Classification obtained by FT-IR spectroscopy provided valuable taxonomic information and was mostly in agreement with data from the genotypic method, ERIC-PCR. The classification functions obtained from the discriminant analysis allowed the identification of 98.72% of isolates from the validation set. FT-IR can serve as a valuable tool in the classification, identification, and typing of thermophilic Campylobacter isolates, and a number of types can be differentiated by means of FT-IR spectroscopy.  相似文献   

15.
Klebsiella pneumoniae has emerged as one of the most important pathogens that frequently encounter in community-acquired or hospital-acquired infections. Timely epidemiological surveillance could greatly facilitate infection control of K. pneumoniae and many deadly pathogens alike. In this study, we evaluated the performance of the IR Biotyper, a Fourier transform infrared (FTIR) spectroscopy system for K. pneumoniae isolates typing through (i) optimizing the culture scheme and defining the cutoff value (COV) range and (ii) comparing with commonly used typing tools such as multi-locus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). We found that a non-selective and non-chromogenic medium with 24 ± 2 h incubation gives the best discriminatory power for the IR Biotyper (IRBT). COV evaluation indicated that the IRBT is a robust typing method with good reproducibility. Besides, we observed that the modified H2O-EtOH suspensions preparation method could enhance the quality of the spectrum, especially for those hypermucoviscous strains. For the method comparison study, our data demonstrated that FTIR spectroscopy could accurately cluster K. pneumoniae strains. The typing results of the IRBT were almost entirely in concordance with those from PFGE and WGS. Together with the advantages such as low costs and short turnaround time (less than 3h), the IRBT is a promising tool for strain typing that could make real-time outbreak investigation a reality.  相似文献   

16.
Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.  相似文献   

17.
Here we used a multigene sequencing approach for the identification and molecular typing of environmental mycobacteria of the fast-growing subgroup. Strains were isolated from hemodialysis water and clinical samples. Eleven type strains of related species of the genus were also included in this study. To gain further insight into the diversity of the environmental mycobacteria, we analyzed several housekeeping genes (16S rRNA, ITS1, gyrB, hsp65, recA, rpoB, and sodA). No individual phylogenetic tree allowed good discrimination of all of the species studied. However, a concatenated and a consensus analysis, combining the genes, allowed better discrimination of each strain to the species level, and the increase in sequence size also led to greater tree robustness. This approach is useful not only for the discrimination and identification of environmental mycobacteria but also for their molecular typing and studies of population genetics. Our results demonstrate high genetic diversity among the isolates obtained, which are probably new species of the genus.  相似文献   

18.
AIMS: To apply rapid and reliable molecular techniques for typing acetic acid bacteria and studying their population dynamics during wine-making processes. METHODS AND RESULTS: We tested the usefulness of the Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) and Repetitive Extragenic Palindromic-PCR (REP-PCR) techniques with reference strains of most of the species of acetic acid bacteria. We obtained exclusive patterns for each strain with the ERIC-PCR technique, proving the utility for characterizing below species level. REP-PCR technique was not as adequate for this purpose because some strains yielded identical fingerprint. One hundred twenty isolates from a commercial red wine fermentation were fingerprinted using both techniques. We detected a high degree of strain diversity in the first stage of fermentation that decreased throughout the process. However, several strains and species were dominant in the alcoholic fermentation phases. The identification of different strains or genotypes at the species level was carried out by restriction analysis of the 16S ribosomal DNA gene. Gluconobacter oxydans dominated the fresh must, while Acetobacter aceti was the only isolated species at the end of the process. Gluconacetobacter hansenii and G. liquefaciens were also isolated in significant numbers at the beginning of fermentation. CONCLUSIONS: ERIC-PCR and REP-PCR techniques proved useful for characterizing strains of acetic acid bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The availability of molecular techniques for a fast and reliable genotypic characterization should increase our knowledge of the ecology of acetic acid bacteria and determine more accurately their growth behaviour during various stages of vinification.  相似文献   

19.
利用病原菌序列差异,对病原菌特定基因和位点进行检测,可以快速发现和鉴别病原菌的分类和特征,对传染病快速诊断和溯源具有基础性意义和重要价值.本文旨在覆盖中国重要传染病的103种病原菌,寻找各分类阶元中特有的同源基因,并从中挑选出适合用于病原菌鉴定、分型的候选基因.利用生物信息学和基因组学方法,对已有全基因组序列的275株病原菌的836415个基因进行比对分析,进一步明确菌株的门、纲、目、科、属各分类阶元中特有的同源基因集合;通过COG功能分类方法,对同源基因集合进行功能注释,并分析在不同分类阶元内的保守基因功能的变化规律.本研究寻找到适合鉴定和分型的不同分类阶元(门、纲、目、科、属)的同源基因集合共19563个(门2891个、纲1016个、目3601个、科10130个、属1925个).对同源基因功能的分析表明,适合对病原菌进行鉴定的基因在不同分类阶元中,表现的功能存在较大差异.革兰氏阳性和阴性病原菌在不同分类阶元中,同源基因表现出的功能也存在差异.该结果将为对在中国广泛存在的病原菌进行检测所涉及的探针、芯片设计提供理论依据,加快目标探针的筛选工作.同时,研究也是首次将世界范围内的全基因组数据和中国重大传染病涉及的病原菌紧密联系结合,为利用功能基因组学开展区域性、有针对性的病原检测和监测,提供候选基因和位点筛选的新方法.相关结果在细菌的元基因组学研究中也具有一定的应用价值.  相似文献   

20.
Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 micro m in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号