首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
Comparison of Trunk and Branch Sap Flow with Canopy Transpiration in Pecan   总被引:9,自引:0,他引:9  
Trunk and branch sap flow were compared with canopy transpirationin a 5-year-old pecan tree (Carya illinoensis ‘Wichita’).Total trunk sap flow, measured by a heat balance trunk flowgauge, was 122.8 kg over a 24 h period, corresponding closelyto the 113.4 kg of canopy transpiration measured by a largeprecision weighing lysimeter. Branches, less than half the diameterof the main trunk, had a total sap flow an order of magnitudeless than the total flow in the trunk. Sap flow in a branchwith a northern exposure was 41% less than that with a southernexposure. When sap flow was normalized per unit tree or branchleaf area, peak sap flow in the south branch matched that inthe main trunk. Tree transpiration and the sap flow in trunkand branches began concurrently, indicating little dynamic waterstorage in the trunk above the gauge. The hydraulic conductanceof the entire tree was 8 to 14 x 10–14 m s–1 Pa–1,similar to values found for a number of woody and herbaceousspecies. Key words: Sap flow, Carya illinoensis, transpiration, lysimeter, trunk flow gauge  相似文献   

2.
In spite of the importance of respiration in forest carbon budgets,the mechanisms by which physiological factors control stem respirationare unclear. An experiment was set up in a Eucalyptus globulusplantation in central Portugal with monoculture stands of 5-year-oldand 10-year-old trees. CO2 efflux from stems under shaded andunshaded conditions, as well as the concentration of CO2 dissolvedin sap [CO2*], stem temperature, and sap flow were measuredwith the objective of improving our understanding of the factorscontrolling CO2 release from stems of E. globulus. CO2 effluxwas consistently higher in 5-year-old, compared with 10-year-old,stems, averaging 3.4 versus 1.3 µmol m–2 s–1,respectively. Temperature and [CO2*] both had important, andsimilar, influences on the rate of CO2 efflux from the stems,but neither explained the difference in the magnitude of CO2efflux between trees of different age and size. No relationshipwas found between efflux and sap flow, and efflux was independentof tree volume, suggesting the presence of substantial barriersto the diffusion of CO2 from the xylem to the atmosphere inthis species. The rate of corticular photosynthesis was thesame in trees of both ages and only reduced CO2 efflux by 7%,probably due to the low irradiance at the stem surface belowthe canopy. The younger trees were growing at a much fasterrate than the older trees. The difference between CO2 effluxfrom the younger and older stems appears to have resulted froma difference in growth respiration rather than a differencein the rate of diffusion of xylem-transported CO2. Key words: Eucalyptus globulus, refixation, stem respiration Received 19 May 2008; Revised 14 September 2008 Accepted 8 October 2008  相似文献   

3.
大连4种城市绿化乔木树种夜间液流活动特征   总被引:4,自引:0,他引:4       下载免费PDF全文
夜间液流有助于树木物质运输及其体内水分的补充(water recharge), 它不仅对植物的生长发育具有重要的生理生态学意义, 而且对大尺度植物蒸腾耗水的估算可能产生重要影响。2008年6月1日至8月31日, 以热扩散探针(thermal dissipation probe, TDP)技术对大连市劳动公园内的雪松(Cedrus deodara)、大叶榉(Zelkova schneideriana)、丝棉木(Euonymus bungeanus)和水杉(Metasequoia glyptostroboides) 4种乔木树种的不同径阶样木树干边材液流进行了测定, 并结合同步土壤水分与小气候观测结果分析了树木夜间(18:00至次日5:00)液流特征。实验结果表明, 树木普遍存在可感夜间液流, 夜间液流总量占观测期液流总量的比例在样木个体间呈现显著差异, 其变化范围为0.44%-75.96%; 观测期雨天夜间液流波动活跃, 显著高于晴天, 其单日夜间液流总量可持平, 甚至高于日间液流。相关分析表明: 水汽压亏缺(vapor pressure deficit, VPD)和风速的变化与夜间蒸腾显著相关, 它们能够较好地解释液流变化(R2 > 0.6); 树木夜间液流主要用于夜间蒸腾和自身水分补充, 夜间液流现象主要发生在前半夜, 后半夜液流平稳且极接近0, 夜间液流量与相应的日间流量(R2 = 0.356, p = 0.00)及胸径(R2Spearman > 0.80)显著相关, 说明植物本身的结构和生理特点也是影响树木夜间液流的重要因子。单株样木夜间液流占全天总蒸腾量的比例低于14.4%, 如不考虑夜间液流的影响, 根据日间液流通过尺度扩展推算的森林生态系统年蒸腾量可能偏低。  相似文献   

4.
We investigated if concentrations of abscisic acid (ABA) andother solutes measured in the first few droplets of xylem sapfrom detopped root systems, are good estimates of those in thetranspiration stream as it enters the shoot-base of whole plants.Xylem sap from root systems of pot-grown tomato plants (Lycopersiconesculentum Mill., cv. Ailsa Craig), at the seven-leaf stage,was obtained by placing root systems in chambers pressurizedto 0.3 MPa with air. The first sample was taken from the cut-surfaceof the hypo-cotyl stump within 30 s of removing the shoot. ABA,sucrose and other osmolytes were more concentrated in the initial100–200 mm3 of xylem sap than in subsequent samples. Thissuggested the sap was contaminated and not unchanged transpirationfluid. The effect was reproduced on the same plant, severaltimes, by recutting the hypocotyl prior to reassembling thesap collecting set-up and repressurizing. Similar results werefound with castor-oil plants (Ricinus communis L., cv. Gibsonii).However, neither release of ABA from the cut surface of thehypocotyl stump, nor the effects of pressure to the roots causedthe contamination. Instead, small radial pressures exerted bya rubber sleeve attached to the hypocotyl stump, for collectingthe sap, were responsible. The effect was reproduced by lightlysqueezing the hypocotyl by hand. The possibility was examined that reliable estimates of ABAconcentrations in transpiration stream fluid may be obtainedfrom sap samples taken immediately after rejecting the initial,contaminated 200 mm3. However, ABA concentrations in these latersamples were also unsatisfactory since they changed with rateof sap flow. The problem may be overcome by analysing sap inducedto flow through detached root systems at rates close to thoseof whole-plant transpiration. Key words: Tomato, Lycopersicon esculentum Mill., Castor-oil plant, Ricinus communis L., roots, root to shoot communication, xylem sap, abscisic acid, sucrose, transpiration stream  相似文献   

5.
应用热平衡法测定玉米/大豆间作群体内作物的蒸腾量   总被引:2,自引:0,他引:2  
通过田间试验采用基于热平衡法的茎流计测定玉米/大豆条带间作群体内作物的蒸腾规律.结果表明:间作群体内,玉米和大豆植株的茎流速率在晴天呈单峰曲线,在阴天则呈多峰曲线.植株的茎流受多个环境因子的影响,其中太阳辐射是影响植株茎流最主要的气象因子.玉米和大豆的单株日茎流量与多个气象因子间存在较好的相关关系,达到极显著水平.茎流观测期内(2008年6月1-30日),间作群体内玉米植株的日均蒸腾量(1.44 mm·d-1)为大豆(0.79 mm·d-1)的1.8倍,玉米和大豆植株的蒸腾量分别占间作群体总蒸腾量的64%和36%.考虑到作物的茎直径和叶面积的空间变异,安装一定数量的茎流探头对于准确测定植株茎流是十分必要的.  相似文献   

6.
华北落叶松夜间树干液流特征及生长季补水格局   总被引:7,自引:0,他引:7  
在宁夏六盘山北侧半干旱区的叠叠沟小流域,采用热扩散探针法在2011年生长季监测了华北落叶松(Larix principisrupprechtii)人工林的树干液流速率,分析了夜间树干液流和补水量的变化特征及与气象、土壤水分等环境因子的关系.结果表明:树干液流速率日变化表现为典型的单峰宽峰曲线,且整个生长季均存在微弱的夜间液流,一般表现为逐渐减小,特别是在晴天,且晴天的变幅显著大于雨天.除生长季中期雨天夜间液流平均速率显著高于晴天,生长季初期及末期雨天与晴天的差异并不显著.生长季内,夜间树干补水总量为11.03 mm,占总蒸腾量的7.22%;5月份的树干补水量最大(4.19mm),其他月份的树干补水量明显减小,在0.9-1.7mm的范围波动.但不同月份间的补水贡献率存在明显差异,表现为生长季末期(9、10月)>初期(5月)>中期(6-8月).相关分析表明,日补水量与各气象因子关系不大,仅与降水量显著正相关(P<0.05),与土壤含水率、日间蒸腾量、日蒸腾总量极显著正相关(P<0.01).夜间补水的月蒸腾贡献率与月均土壤含水率、月均气温、月均日间蒸腾量、月总蒸腾量等显著相关(P<0.05);而夜间补水的日蒸腾贡献率与日最高气温、日均气温、日间蒸腾量、日均饱和水汽压差、日总蒸腾量、日均太阳辐射强度、日最低气温、日均空气相对湿度、日降水量、土壤含水率等极显著相关(P<0.01),经逐步回归分析建立了日补水量蒸腾贡献率与环境因子的多元线性模型.  相似文献   

7.
Studies on the Movement of Water Through Apple Trees   总被引:12,自引:0,他引:12  
Resistances to the flow of water through young potted appletrees were estimated by measuring the transpiration rate oftrees with and without root systems. Root system resistanceswere obtained by difference. Whole-plant resistances were ofthe order 10 x 1013 Pa s m–3 and there was some evidencethat root resistances (Rr) varied with transpiration rate; theratio Rr:Rx (where Rx is resistance to water flow in the stemsystem) altered from 2:1 at relatively high transpiration ratesto 1:1 at lower rates. The trunk of a 9-year-old orchard tree (trunk diameter {smalltilde}7 cm, height {small tilde}2.5 m) was cut under water andestimates of the flow resistances in this tree were obtained.These were much lower than the resistances to flow in the pottedtrees. Capacitance (defined as the change in stored water content perunit change in plant water potential) values were calculatedfor the small trees and the large tree from measurements ofweight and water potential changes after the trees were removedfrom water. They were very similar on a weight basis (approx.2.0 x 10–8 kg kg–1 Pa–1). Leaf capacitancevalues ({small tilde}1 x 10–8 kg Pa–1 m–2)were also obtained. Stomatal conductances decreased with water potential and increasedwith short-wave radiation, but the relationships were not definitive.Estimates of boundary layer conductance in a greenhouse (verylow wind speeds) were of the same order ({small tilde}5 mm s–1)as values obtained previously.  相似文献   

8.
The effect of two different copper conditions (deficiency andexcess) on the amino acid composition in B. carinata xylem sapwas analysed. When the Cu in the nutrient solution was increasedfrom 0.12 to 2.5 or 5 µM, the concentrations of histidine,threonine, glutamine, proline, methionine, and glycine weremuch increased in the xylem sap. When Cu was made deficientin the nutrient solution by decreasing its concentration from0.12 µM to 0 µM, nicotianamine, glutamine, and threoninewere significantly increased in the xylem sap. Aqueous solutionscontaining different Cu–amino acid complexes (simulatedsaps) responded in a specific way to the changes in pH, providinga signature that was used to evaluate, by comparison with thereal xylem sap, the importance of each amino acid in the xylemtransport of Cu. For a single amino acid, the free solutionCu2+ concentration versus pH titration curves for histidineand proline were the most similar to that for xylem under Cuexcess. Under Cu deficiency, this Cu concentration versus pHtitration curve appeared to be very similar to that for nicotianamine.It is concluded that increased Cu concentrations induced theselective synthesis of certain amino acids in the sap, of whichhistidine and proline are the most important. Under Cu deficiency,the concentration of nicotianamine was induced the most. Thefact that nicotianamine is induced under Cu starvation and notunder Cu excess, is in contrast to similar studies indicatingspecies-specific reactions. However, the induction of nicotianamineunder Cu starvation is in line with recent molecular data ofthe role of nicotianamine in intracellular Cu delivery. Key words: Brassica carinata, copper, histidine, nicotianamine, proline, xylem sap Received 30 September 2008; Revised 16 October 2008 Accepted 20 October 2008  相似文献   

9.
Sap flows in the xylem of plant roots in response to gradientsin water potential, either between soil and atmosphere (transpiration)or soil layers of different moisture content (termed hydraulicredistribution). The latter has the potential to influence waterbudgets and species interactions, but we lack information forall but a few plant communities. We combined heat pulse measurementsof sap flow with dye and isotope tracing techniques to gaugethe movement of xylem sap within, and exudation from, rootsof Banksia prionotes (Lindley). We demonstrated ‘ hydrauliclift’ during the dry season and provide some evidencethat extremely dry soils limit hydraulic lift. In addition wereport difficulties posed by spiralled xylem tissue in rootsfor the application of heat pulse techniques. Copyright 2000Annals of Botany Company Banksia prionotes, sap flow, hydraulic lift, heat ratio method, deuterium, stable isotopes, root architecture.  相似文献   

10.
Inherent differences in the responses of stomata on abaxialand adaxial epidermal surfaces of leaves of Commelina communishave previously been suggested to be due to differences in theconcentrations of apoplastic Ca. Adaxial stomata have also beenreported to be more sensitive than abaxial stomata to appliedabscisic acid (ABA). The aims of these experiments were to determinethe validity of these conclusions and to see if xylem sap Cahas a role in determining the response of stomata to ABA. It can be shown from measurements of relative stomatal resistance(determined with a viscous flow porometer) and stomatal conductancethat stomata were more open in plants grown on 8-0 mol m–3Ca, than with those grown on 2-0 mol m–3 Ca. When attachedleaves were fed with ABA via the transpiration stream neitherthe extent nor the rate with which conductance declined wasdependent on Ca nutrition. The extent of Ca accumulation within both epidermes was relatedto the concentration of Ca in the rhizosphere and in the xylemsap. It did not, however, appear to reflect the apparent differencesin the flux of the transpiration stream between the two epidermes.Plants growing at the lower Ca concentration accumulated proportionallymore epidermal Ca relative to Ca in xylem sap. The evidencepresented suggests that Ca movement from the xylem to the epidermiscannot be simply described by a mass flow model, and that thedistribution of Ca is not an adequate explanation of the differencesin the behaviour of adaxial and abaxial stomata. The potentialrole for changes in xylem sap Ca to act as a regulator of stomatalbehaviour are discussed. Key words: Abscisic acid, calcium, Commelina communis L., stomatal conductance  相似文献   

11.
Salt Tolerance in the Triticeae: Leymus sabulosus   总被引:1,自引:0,他引:1  
Elymus dahuhcus, Leymus giganteus, L. angustus, L. sabulosusand, to a lesser extent, L. triticoides, were found to tolerate200 mol m–3 NaCl in solution culture. Elymus dahuricusdiffered from the Leymus species in its ion-uptake characteristics,showing a greater uptake of Cl and Na and a greater loss ofK from the shoots. In a more detailed experiment on Leymus sabulosusit was found that transpiration rates altered rapidly in responseto changes in external salinity whereas the accumulation ofNa and Cl in the leaves exhibited a lag of several days. Insalt stressed L. sabulosus Cl partially replaced the high levelsof nitrate found in the leaves of control plants. Glycinebetainelevels increased in the leaves from 8.0 mol m–3 plantsap in the controls to 28 mol m–3 plant sap at 250 molm–3 NaCl. Key words: Salt stress, Transpiration, Solute accumulation, Leymus  相似文献   

12.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

13.
Starting in 1996, individual trees of Scots pine (Pinus sylvestrisL.) aged 30 years, were grown in closed-top chambers and exposedto either normal ambient conditions (CON), elevated CO2(approx.700 µmol mol-1; Elev. C), elevated temperature (approx.2 °C and approx. 6 °C above the outside ambient temperatureduring the ‘growing season’ and ‘off season’,respectively; Elev. T) or a combination of elevated CO2and warmertemperature (Elev. CT). Sap flow was monitored simultaneouslyby the constant-power heat balance method in a total of 16 trees,four for each treatment, over a 32 d period in summer 1998 (afterthe completion of needle expansion and branch elongation). Toquantify the contributions of crown and physical environmentalvariables to total crown transpiration, a ‘sun/shade model’was developed and used to partition the changes in transpirationto different sources. The results of the sap flow measurementsindicate that (1) total daily sap flow (Etree.d) varied from0.15–3.41 kg per tree; (2) the treatment effect on Etree.ddependedgreatly on the weather conditions; (3) the cumulative Etree.dforthe 32 d dropped significantly by 22% relative to CON (P =0.038)under Elev. C and increased significantly by 21% (P =0.043)and 16% (P =0.048) under Elev. T and Elev. CT, respectively.In general, the modelled transpiration gave good agreement withthe sap flow results. The model computations showed that, ona typical sunny day in summer, the effect of treatment on crownstomatal conductance was responsible for approx. 80% of thechange inEtree.d , while the increase in needle area and theeffect on total radiation absorption contributed only a smallpercentage. Furthermore, sunlit needles were responsible forover 60% of change in transpiration. The effect of the treatmentson Etree.dwas larger at high temperature and vapour pressuredeficit but was not sensitive to incident daily radiation. Copyright2000 Annals of Botany Company Transpiration model, sap flow, CO2and temperature elevation, environment-controlled chamber, Pinus sylvestris L.  相似文献   

14.
The Effect of Wind on Grasses: 1. CUTICULAR AND STOMATAL TRANSPIRATION   总被引:1,自引:0,他引:1  
Transpiration of Festuca arundinacea Schreb, strain S170, wasmeasured at two different wind speeds in a controlled-environmentwind tunnel. As a result of a wind increase from 1 m s–1to 3.5 m s–1 above the sward, transpiration graduallyincreased, especially at night-time. Similar effects were notedin three other grass species. The transpiration increase couldbe attributed to decreases in stomatal and cuticular resistances,as a result of leaf buffeting.  相似文献   

15.
An application of the methods of irreversible thermodynamicsto the fluxes in plant xylem is examined, and an expressionis derived for the electric current present when a length ofstem is short circuted. After examination of the electrode by-passingefficiency, bioelectricity in Cayratia clematidea (F. Muell.)Domin., maintained under conditions of adequate soil water,is shown to reflect changes in the transpiration rate. Pressuregradients and sap velocities in C. clematidea are estimatedfrom short-circuit current data. It is suggested that the experimentaltechnique described may be useful for continuous measurementsof sap flow or transpiration without disturbing the plant environment.  相似文献   

16.
The present study investigates whether previously acquired boron(B) in mature leaves in white lupin can be retranslocated intothe rapidly growing young reproductive organs, in response toshort-term (3 d) interrupted B supply. In a preliminary experimentwith white lupin in soil culture, B concentrations in phloemexudates remained at 300–500 µM, which were substantiallyhigher than those in the xylem sap (10–30 µM). Thehigh ratios of B concentrations in phloem exudates to thosein the xylem sap were close to values published for potassiumin lupin plants. To differentiate ‘old’ B in theshoot from ‘new’ B in the root, an experiment wascarried out in which the plants were first supplied with 20µM 11B (99.34% by weight) in nutrient solution for 48d after germination (DAG) until early flowering and then transferredinto either 0.2 µM or 20 µM 10B (99.47% by weight)for 3 d. Regardless of the 10B treatments, significant levelsof 11B were found in the phloem exudates (200–300 µMin 20 µM 10B and 430 µM in 0.2 µM 10B treatment)and xylem sap over the three days even without 11B supply tothe root. In response to the 0.2 µM 10B treatment, thetranslocation of previously acquired 11B in the young (the uppermostthree leaves), matured, and old leaves was enhanced, coincidingwith the rise of 11B in the xylem sap (to >15 µM) andphloem exudates (430 µM). The evidence supports the hypothesisthat previously acquired B in the shoot was recirculated tothe root via the phloem, transferred into the xylem in the root,and transported in the xylem to the shoot. In addition, somepreviously acquired 11B in the leaves may have been translocatedinto the rapidly growing inflorescence. Phloem B transport resultedin the continued net increment of 11B in the flowers over 3d without 11B supply. However, it is still uncertain whetherthe amount of B available for recirculation is adequate to supportreproductive growth until seed maturation. Key words: 10B, 11B, B recirculation, Lupinus albus L., phloem exudate, xylem sap Received 9 October 2007; Revised 28 November 2007 Accepted 30 November 2007  相似文献   

17.
Barley (Hordeum vulgare L. cv. Golf) plants were grown at twodifferent relative addition rates; 0.1 and 0.2 d–1 ofnitrate. Three to five days before measurements started theplants were transferred to a nutrient solution with 2 mM nitrateor ammonium. The ammonium-grown plants showed increased ammoniumlevels in both shoots and roots and also increased ammoniumconcentrations in xylem sap. Ammonia emission measured in cuvettes connected to an automaticNH3 monitor was close to zero for nitrate-grown plants but increasedto 0.59 and 0.88 nmol NH3 m–2 S–1 for plants transferredto ammonium after growing at RA=0.2 and 0.1 d–1, respectively.In darkness, NH3 emission decreased together with photosynthesisand transpiration, but increased rapidly when the light wasturned on again. Addition of 0.5 mM methionine sulphoximine (MSO) to the plantscaused an almost complete inhibition of both root and shootglutamine synthetase (GS) activity after 24 h. Ammonia emissionincreased dramatically and photosynthesis and transpirationdecreased in both nitrate- and ammonium-grown plants as a resultof the GS inhibition. At the same time plant tissue and xylemsap ammonium concentrations increased, indicating the importanceof GS in controlling plant ammonium levels and thereby NH3 emissionfrom the leaves. Key words: Hordeum vulgare, ammonia emission, ammonium, glutamine synthetase, nitrogen nutrition, photosynthesis, transpiration  相似文献   

18.
Transpiration of a central European endemic tree species, Pinus rotundata Link, growing on a wooded peat bog in the Třeboň Basin, Czech Republic, was studied in 1999–2000. Transpiration was measured by sap flow techniques (heat field deformation method) on individual trees and scaled up to stand level. The radial patterns of sap flow density showed narrow peaks in the outer part of the xylem, sapwood accounted for 47–60% of the xylem radius and 72–84% of the xylem basal area. Adult trees tolerated well both short-term flooding during the growing season and drawdown of the water table to a depth of 60 cm below ground level. The maximum and mean daily transpiration rates were 3.0 and 1.8 mm per day, and were thus similar to published data for Scots pine. The seasonal total transpiration (25 April–20 October 2000, 180 days) amounted to 322 mm, or 62% of the potential evapotranspiration over this period. This canopy transpiration was compensated by 319 mm of precipitation. The difference between the accumulated precipitation and the accumulated transpiration (derived from seasonal sap flow measurements) closely mimicked the seasonal course of the water table.  相似文献   

19.
Pure phloem sap was collected from leaf sheaths of Zea maysL. by the insect laser technique, and its chemical compositionwas analyzed. Sucrose was the only sugar detected. The predominantinorganic ions were K+ and Cl. The adenylate energy chargeof phloem sap was between 0.72 and 0.86. (Received October 18, 1989; Accepted May 11, 1990)  相似文献   

20.
陈彪  陈立欣  刘清泉  刘平生  张志强 《生态学报》2015,35(15):5076-5084
作为我国半干旱地区重要的造林绿化树种之一,樟子松在城市林业建设中被广泛使用,研究樟子松在半干旱地区城市环境下的蒸腾耗水及其环境响应对于城市森林建设具有重要的理论意义和应用价值。从2012年8月至10月,以位于内蒙古呼和浩特市树木园内的30年生樟子松为研究对象,按照其径阶分布,选定8株样木,采用热扩散探针法对其树干边材液流进行了连续动态监测,并采用小型自动气象站和土壤水分传感器同步连续测定小气候因子与土壤含水量动态变化。结果表明:在不同天气条件下,樟子松树干液流密度日变化存在差异,晴天时液流密度曲线表现为单峰曲线,且液流密度较大,阴天与雨天液流密度相对较小;液流密度的大小与供试树木胸径无显著相关关系(P0.05);太阳辐射(r=0.731,P0.01)和大气饱和水汽压亏缺(VPD)(r=0.877,P0.01)是影响樟子松蒸腾的主要因子,风速与液流密度极显著相关(P0.01),但相关系数仅为0.518;土壤水分并未显著影响液流密度(r=-0.071,P0.05)。以太阳辐射Ra、VPD作为自变量建立的模型能够分别解释樟子松68%、71%的液流变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号