首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to search for a common structural motif in the phosphate-binding sites of protein-mononucleotide complexes, we investigated the structural variety of phosphate-binding schemes by an all-against-all comparison of 491 binding sites found in the Protein Data Bank. We found four frequently occurring structural motifs composed of protein atoms interacting with phosphate groups, each of which appears in different protein superfamilies with different folds. The most frequently occurring motif, which we call the structural P-loop, is shared by 13 superfamilies and is characterized by a four-residue fragment, GXXX, interacting with a phosphate group through the backbone atoms. Various sequence motifs, including Walker's A motif or the P-loop, turn out to be a structural P-loop found in a few specific superfamilies. The other three motifs are found in pairs of superfamilies: protein kinase and glutathione synthetase ATPase domain like, actin-like ATPase domain and nucleotidyltransferase, and FMN-linked oxidoreductase and PRTase.  相似文献   

2.
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.  相似文献   

3.
A total of six different structural alignment tools (TM‐Align, TriangleMatch, CLICK, ProBis, SiteEngine and GA‐SI) were assessed for their ability to perform two particular tasks: (i) discriminating FAD (flavin adenine dinucleotide) from non‐FAD binding sites, and (ii) performing an all‐to‐all comparison on a set of 883 FAD binding sites for the purpose of classifying them. For the first task, the consistency of each alignment method was evaluated, showing that every method is able to distinguish FAD and non‐FAD binding sites with a high Matthews correlation coefficient. Additionally, GA‐SI was found to provide alignments different from those of the other approaches. The results obtained for the second task revealed more significant differences among alignment methods, as reflected in the poor correlation of their results and highlighted clearly by the independent evaluation of the structural superimpositions generated by each method. The classification itself was performed using the combined results of all methods, using the best result found for each comparison of binding sites. A number of different clustering methods (Single‐linkage, UPGMA, Complete‐linkage, SPICKER and k‐Means clustering) were also used. The groups of similar binding sites (proteins) or clusters generated by the best performing method were further analyzed in terms of local sequence identity, local structural similarity and conservation of analogous contacts with the FAD ligands. Each of the clusters was characterized by a unique set of structural features or patterns, demonstrating that the groups generated truly reflect the structural diversity of FAD binding sites. Proteins 2016; 84:1728–1747. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Kinjo AR  Nakamura H 《PloS one》2012,7(2):e31437
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.  相似文献   

5.
The phosphate binding loop (P-loop) is a common feature of a large number of enzymes that bind nucleotide whose consensus sequence is often used as a fingerprint for identifying new members of this group. We review here the binding sites of nine purine nucleotide binding proteins, with a focus on their relationship to the active site of myosin. This demonstrates that there is considerable conversation in the distribution and nature of the ligands that coordinate the triphosphate moiety. This comparison further suggests that at least myosin and the G-proteins utilize a similar mechanism for nucleotide hydrolysis.  相似文献   

6.
MOTIVATION: Many evolutionarily distant, but functionally meaningful links between proteins come to light through comparison of spatial structures. Most programs that assess structural similarity compare two proteins to each other and find regions in common between them. Structural classification experts look for a particular structural motif instead. Programs base similarity scores on superposition or closeness of either Cartesian coordinates or inter-residue contacts. Experts pay more attention to the general orientation of the main chain and mutual spatial arrangement of secondary structural elements. There is a need for a computational tool to find proteins with the same secondary structures, topological connections and spatial architecture, regardless of subtle differences in 3D coordinates. RESULTS: We developed ProSMoS--a Protein Structure Motif Search program that emulates an expert. Starting from a spatial structure, the program uses previously delineated secondary structural elements. A meta-matrix of interactions between the elements (parallel or antiparallel) minding handedness of connections (left or right) and other features (e.g. element lengths and hydrogen bonds) is constructed prior to or during the searches. All structures are reduced to such meta-matrices that contain just enough information to define a protein fold, but this definition remains very general and deviations in 3D coordinates are tolerated. User supplies a meta-matrix for a structural motif of interest, and ProSMoS finds all proteins in the protein data bank (PDB) that match the meta-matrix. ProSMoS performance is compared to other programs and is illustrated on a beta-Grasp motif. A brief analysis of all beta-Grasp-containing proteins is presented. Program availability: ProSMoS is freely available for non-commercial use from ftp://iole.swmed.edu/pub/ProSMoS.  相似文献   

7.
This work presents a method to compare local clusters of interactingresidues as observed in a known three-dimensional protein structurewith corresponding clusters inferred from homologous proteinsequences, assuming conserved protein folding. For this purposethe local environment of a selected residue in a known proteinstructure is defined as the ensemble of amino acids in contactwith it in the folded state. Using a multiple sequence alignmentto identify corresponding residues in homologous proteins, adetailed comparison can be performed between the local environmentof a selected amino acid in the template protein structure andthe expected local environments at the sets of equivalent residues,derived from the aligned protein sequences. The comparison makesit possible to detect conserved local features such as hydrogenbonding or complementarity in residue substitution. A globalmeasure of environmental similarity is also defined, to searchfor conserved amino acid clusters subject to functional or structural constraints. The proposed approach is useful for investigatingprotein function as well as for site-directed mutagenesis experiments,where appropriate amino acid substitutions can be suggestedby observing naturally occurring protein variants.  相似文献   

8.
Many proteins function by interacting with other small molecules (ligands). Identification of ligand‐binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand‐binding protein sequences and functions. Consequently, we classified the patches into ~2000 well‐characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross‐fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes.  相似文献   

9.
Sujatha MS  Balaji PV 《Proteins》2004,55(1):44-65
Galactose-binding proteins characterize an important subgroup of sugar-binding proteins that are involved in a variety of biological processes. Structural studies have shown that the Gal-specific proteins encompass a diverse range of primary and tertiary structures. The binding sites for galactose also seem to vary in different protein-galactose complexes. No common binding site features that are shared by the Gal-specific proteins to achieve ligand specificity are so far known. With the assumption that common recognition principles will exist for common substrate recognition, the present study was undertaken to identify and characterize any unique galactose-binding site signature by analyzing the three-dimensional (3D) structures of 18 protein-galactose complexes. These proteins belong to 7 nonhomologous families; thus, there is no sequence or structural similarity across the families. Within each family, the binding site residues and their relative distances were well conserved, but there were no similarities across families. A novel, yet simple, approach was adopted to characterize the binding site residues by representing their relative spatial dispositions in polar coordinates. A combination of the deduced geometrical features with the structural characteristics, such as solvent accessibility and secondary structure type, furnished a potential galactose-binding site signature. The signature was evaluated by incorporation into the program COTRAN to search for potential galactose-binding sites in proteins that share the same fold as the known galactose-binding proteins. COTRAN is able to detect galactose-binding sites with a very high specificity and sensitivity. The deduced galactose-binding site signature is strongly validated and can be used to search for galactose-binding sites in proteins. PROSITE-type signature sequences have also been inferred for galectin and C-type animal lectin-like fold families of Gal-binding proteins.  相似文献   

10.
Calcium ions regulate many cellular processes and have important structural roles in living organisms. Despite the great variety of calcium-binding proteins (CaBPs), many of them contain the same Ca(2+)-binding helix-loop-helix structure, referred to as the EF-hand. In the canonical EF-hand, the loop contains three calcium-binding aspartic acid residues, which form the DxDxDG sequence motif, and is flanked by two alpha-helices. Recently, other CaBPs containing the same motif, but lacking one or both helices, have been described. Here, structural motif searches were used to analyse the full diversity of structural context in the known set of DxDxDG-containing CaBPs, including those where the structural resemblance of a given DxDxDG motif to that of EF-hands had not been noted. The results obtained indicate that the EF-hand represents but one, among many, structural context for the DxDxDG-like Ca(2+)-binding loops. While the structural similarity of the binuclear calcium-binding sites in anthrax protective antigen and human thrombospondin suggests that they are homologous, evolutionary relationships for mononuclear sites are harder to discern. The possible scenarios for the evolution of DxDxDG motif-containing calcium-binding loops in a variety of non-homologous proteins suggested loop transplant as a mechanism perhaps responsible for much of the diversity in structural contexts of present day DxDxDG-type CaBPs. Additionally, while it can be shown that existence of a DxDxDG sequence is not enough to confer a conformation suitable for calcium binding, local convergent evolution may still have a role. The analysis presented here has consequences for the prediction of calcium binding from sequence alone.  相似文献   

11.
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co‐factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co‐factors adds a chemical and function‐relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut‐off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters. Proteins 2014; 82:648–656. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed treble clef finger in this study, forms the protein structural core and is 25-45 residues long. The treble clef motif is assembled around the central zinc ion and consists of a zinc knuckle, loop, beta-hairpin and an alpha-helix. The knuckle and the first turn of the helix each incorporate two zinc ligands. Treble clef domains constitute the core of many structures such as ribosomal proteins L24E and S14, RING fingers, protein kinase cysteine-rich domains, nuclear receptor-like fingers, LIM domains, phosphatidylinositol-3-phosphate-binding domains and His-Me finger endonucleases. The treble clef finger is a uniquely versatile motif adaptable for various functions. This small domain with a 25 residue structural core can accommodate eight different metal-binding sites and can have many types of functions from binding of nucleic acids, proteins and small molecules, to catalysis of phosphodiester bond hydrolysis. Treble clef motifs are frequently incorporated in larger structures or occur in doublets. Present analysis suggests that the treble clef motif defines a distinct structural fold found in proteins with diverse functional properties and forms one of the major zinc finger groups.  相似文献   

13.
14.
15.
Studying similarities in protein molecules has become a fundamental activity in much of biology and biomedical research, for which methods such as multiple sequence alignments are widely used. Most methods available for such comparisons cater to studying proteins which have clearly recognizable evolutionary relationships but not to proteins that recognize the same or similar ligands but do not share similarities in their sequence or structural folds. In many cases, proteins in the latter class share structural similarities only in their binding sites. While several algorithms are available for comparing binding sites, there are none for deriving structural motifs of the binding sites, independent of the whole proteins. We report the development of SiteMotif, a new algorithm that compares binding sites from multiple proteins and derives sequence-order independent structural site motifs. We have tested the algorithm at multiple levels of complexity and demonstrate its performance in different scenarios. We have benchmarked against 3 current methods available for binding site comparison and demonstrate superior performance of our algorithm. We show that SiteMotif identifies new structural motifs of spatially conserved residues in proteins, even when there is no sequence or fold-level similarity. We expect SiteMotif to be useful for deriving key mechanistic insights into the mode of ligand interaction, predict the ligand type that a protein can bind and improve the sensitivity of functional annotation.  相似文献   

16.
Assigning function to structures is an important aspect of structural genomics projects, since they frequently provide structures for uncharacterized proteins. Similarities uncovered by structure alignment can suggest a similar function, even in the absence of sequence similarity. For proteins adopting novel folds or those with many functions, this strategy can fail, but functional clues can still come from comparison of local functional sites involving a few key residues. Here we assess the general applicability of functional site comparison through the study of 157 proteins solved by structural genomics initiatives. For 17, the method bolsters confidence in predictions made based on overall fold similarity. For another 12 with new folds, it suggests functions, including a putative phosphotyrosine binding site in the Archaeal protein Mth1187 and an active site for a ribose isomerase. The approach is applied weekly to all new structures, providing a resource for those interested in using structure to infer function.  相似文献   

17.
MOTIVATION: The large-scale comparison of protein-ligand binding sites is problematic, in that measures of structural similarity are difficult to quantify and are not easily understood in terms of statistical similarity that can ultimately be related to structure and function. We present a binding site matching score the Poisson Index (PI) based upon a well-defined statistical model. PI requires only the number of matching atoms between two sites and the size of the two sites-the same information used by the Tanimoto Index (TI), a comparable and widely used measure for molecular similarity. We apply PI and TI to a previously automatically extracted set of binding sites to determine the robustness and usefulness of both scores. RESULTS: We found that PI outperforms TI; moreover, site similarity is poorly defined for TI at values around the 99.5% confidence level for which PI is well defined. A difference map at this confidence level shows that PI gives much more meaningful information than TI. We show individual examples where TI fails to distinguish either a false or a true site paring in contrast to PI, which performs much better. TI cannot handle large or small sites very well, or the comparison of large and small sites, in contrast to PI that is shown to be much more robust. Despite the difficulty of determining a biological 'ground truth' for binding site similarity we conclude that PI is a suitable measure of binding site similarity and could form the basis for a binding site classification scheme comparable to existing protein domain classification schema.  相似文献   

18.
Purified Ia molecules can specifically bind many unrelated peptide Ag, and such binding appears to be a necessary, albeit not sufficient, prerequisite for the immunogenicity of the proteins from which such peptides are derived. We have recently analyzed the affect of single amino acid substitutions on the I-Ad binding of the immunogenic peptide OVA 323-339. The results obtained demonstrated the very permissive nature of Ag-Ia interaction. We also showed that unrelated peptides that are good I-Ad binders share a common structural motif and speculated that recognition of such motifs could represent a mechanism to achieve a very permissive type of interaction that yet retained some degree of specificity. In the present set of experiments we analyzed the I-Ad binding pattern of a series of overlapping peptides derived from sperm whale myoglobin (residues 102-125) and influenza hemagglutinin (residues 121-146) to determine whether the peptide regions predicted on the basis of structural similarity to be involved in I-Ad binding were in fact involved. In both cases, the I-Ad-interacting determinants were found to contain the sequence motif postulated to be important for I-Ad binding. These data support the hypothesis that I-Ad molecules recognize a large library of Ag by virtue of common structural motifs present in peptides derived from phylogenetically unrelated proteins.  相似文献   

19.
The BRCT (Breast Cancer Carboxyl Terminus) domain is widely distributed in proteins involved in DNA metabolism and cell cycle regulation. In most of the representative members of the BRCT family, this domain is usually comprising of about 90-100 amino acid residues and generally present as single motif or in tandem repeats. Although the members of BRCT family share little sequence similarity, structural studies have demonstrated a relatively conserved structure of two or three alpha-helices surrounding the central beta-sheets. This report illustrates an in silico analysis with the aim of understanding the sequential, structural, and phylogenetic features of BRCT domain in higher plant genome. Based on database searches 25 BRCT domain containing proteins were identified and many of them were found to be involved in multiple DNA damage repair pathways. We have further combined the homology modeling in order to address the structure-function relations of BRCT domain in connection with DNA damage repair mechanism in plants.  相似文献   

20.
Biou V  Cherfils J 《Biochemistry》2004,43(22):6833-6840
The functional diversity of small GTP-binding proteins (G proteins) and their ability to function as molecular switches are based on their interactions with many different proteins. A wealth of structural data has revealed that their partners are often unrelated to each other in sequence and structure, but their binding sites are in general overlapping, notably at the so-called switch regions, whose conformation is sensitive to the nature of the bound nucleotide. We termed "multispecificity" this unique property of G proteins and investigated its structural principles by a database-implemented comparison of their protein-protein interfaces. Multispecific residues were found to be distributed throughout the G protein surface, with the highest multiplicity at the switch regions, each engaging interactions with 50-80% of the bound partners. Remarkably, residues involved in multiple interactions do not define consensus binding sites where all partners have convergent interactions. Rather, they adapt to multiple stereochemical and structural environments by combining the composite nature of amino acids with structural plasticity. We propose that not only the nucleotide switch but also multispecificity is the hallmark of the G protein module. Thus, G proteins are representative of highly connected proteins located at nodes of protein interactomes, probably the best structurally characterized member of this emerging class of proteins to date. This central functional property is also their Achilles' heal, facilitating their hijacking by pathogens, but may constitute an unexplored advantage in designing or screening novel therapeutic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号