首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To estimate how sophisticated should an empirical scoring function be to ensure successful docking, scoring and virtual screening a new scoring function NScore (naive score) has been developed and tested. NScore is an extremely simple function and has the minimum possible number of parameters; nevertheless, it allows all the main effects determining the ligand–protein interaction to be taken into account. The fundamental difference of NScore from the currently used empirical functions is that all its parameters are selected on the basis of general physical considerations, without any adjustment or training with the use of experimental data on ligand–protein interaction. The results of docking and scoring with the use of NScore in an independent test sets of proteins and ligands have proved to be as good as those yielded by the ICM, GOLD, and Glide software packages, which use sophisticated empirical scoring functions. With respect to some parameters, the results of docking with the use of NScore are even better than those obtained using other functions. Since no training set is used in the development of NScore, this scoring function is indeed versatile in that it does not depend on the specific goal or target. We have performed virtual screening for ten targets and obtained results almost as good as those yielded by the Glide and better than GOLD and DOCK software. Figure Average percent of known actives found vs percent of the ranked database screened (x axis) for NScore (NScore, black)- an extremely simple function where all parameters are selected on the basis of general physical considerations, without any adjustment or training with the use of experimental data, Glide XP (XP, red), Glide SP (SP, green), DOCK (DOCK, blue), GOLD GoldScore1x (gold1x, cyan), and GOLD ChemScore1x (chem1x, magenta). Grey lines (rand show results expected by chance.  相似文献   

2.
Golgi alpha-mannosidase II (GMII), a zinc-dependent glycosyl hydrolase, is a promising target for drug development in anti-tumor therapies. Using X-ray crystallography, we have determined the structure of Drosophila melanogaster GMII (dGMII) complexed with three different inhibitors exhibiting IC50's ranging from 80 to 1000 microM. These structures, along with those of seven other available dGMII/inhibitor complexes, were then used as a basis for the evaluation of seven docking programs (GOLD, Glide, FlexX, AutoDock, eHiTS, LigandFit, and FITTED). We found that small inhibitors could be accurately docked by most of the software, while docking of larger compounds (i.e., those with extended aromatic cycles or long aliphatic chains) was more problematic. Overall, Glide provided the best docking results, with the most accurately predicted binding around the active site zinc atom. Further evaluation of Glide's performance revealed its ability to extract active compounds from a benchmark library of decoys.  相似文献   

3.
Gorelik B  Goldblum A 《Proteins》2008,71(3):1373-1386
Multiple near-optimal conformations of protein-ligand complexes provide a better chance for accurate representation of biomolecular interactions, compared with a single structure. We present ISE-dock--a docking program which is based on the iterative stochastic elimination (ISE) algorithm. ISE eliminates values that consistently lead to the worst results, thus optimizing the search for docking poses. It constructs large sets of such poses with no additional computational cost compared with single poses. ISE-dock is validated using 81 protein-ligand complexes from the PDB and its performance was compared with those of Glide, GOLD, and AutoDock. ISE-dock has a better chance than the other three to find more than 60% top single poses under RMSD = 2.0 A and more than 80% under RMSD = 3.0 A from experimental. ISE alone produced at least one 3.0 A or better solutions among the top 20 poses in the entire test set. In 98% of the examined molecules, ISE produced solutions that are closer than 2.0 A from experimental. Paired t-tests (PTT) were used throughout to assess the significance of comparisons between the performances of the different programs. ISE-dock provides more than 100-fold docking solutions in a similar time frame as LGA in AutoDock. We demonstrate the usefulness of the large near optimal populations of ligand poses by showing a correlation between the docking results and experiments that support multiple binding modes in p38 MAP kinase (Pargellis et al., Nat Struct Biol 2002;9:268-272] and in Human Transthyretin (Hamilton, Benson, Cell Mol Life Sci 2001;58:1491-1521).  相似文献   

4.
Drug discovery is increasingly tackling challenging protein binding sites regarding molecular recognition and druggability, including shallow and solvent-exposed protein-protein interaction interfaces. Macrocycles are emerging as promising chemotypes to modulate such sites. Despite their chemical complexity, macrocycles comprise important drugs and offer advantages compared to non-cyclic analogs, hence the recent impetus in the medicinal chemistry of macrocycles. Elaboration of macrocycles, or constituent fragments, can strongly benefit from knowledge of their binding mode to a target. When such information from X-ray crystallography is elusive, computational docking can provide working models. However, few studies have explored docking protocols for macrocycles, since conventional docking methods struggle with the conformational complexity of macrocycles, and also potentially with the shallower topology of their binding sites. Indeed, macrocycle binding mode prediction with the mainstream docking software GOLD has hardly been explored. Here, we present an in-depth study of macrocycle docking with GOLD and the ChemPLP scores. First, we summarize the thorough curation of a test set of 41 protein-macrocycle X-ray structures, raising the issue of lattice contacts with such systems. Rigid docking of the known bioactive conformers was successful (three top ranked poses) for 92.7% of the systems, in absence of crystallographic waters. Thus, without conformational search issues, scoring performed well. However, docking success dropped to 29.3% with the GOLD built-in conformational search. Yet, the success rate doubled to 58.5% when GOLD was supplied with extensive conformer ensembles docked rigidly. The reasons for failure, sampling or scoring, were analyzed, exemplified with particular cases. Overall, binding mode prediction of macrocycles remains challenging, but can be much improved with tailored protocols. The analysis of the interplay between conformational sampling and docking will be relevant to the prospective modelling of macrocycles in general.  相似文献   

5.
Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and some important drug targets have proven especially challenging. In these targets, scoring functions cannot accurately identify the native or near-native binding pose of the ligand from among decoy poses, which affects both the accuracy of the binding affinity prediction and the ability of virtual screening to identify true binders in chemical libraries. Here, we present an approach to discriminating native poses from decoys in difficult targets for which several scoring functions failed to correctly identify the native pose. Our approach employs Discrete Molecular Dynamics simulations to incorporate protein-ligand dynamics and the entropic effects of binding. We analyze a collection of poses generated by docking and find that the residence time of the ligand in the native and nativelike binding poses is distinctly longer than that in decoy poses. This finding suggests that molecular simulations offer a unique approach to distinguishing the native (or nativelike) binding pose from decoy poses that cannot be distinguished using scoring functions that evaluate static structures. The success of our method emphasizes the importance of protein-ligand dynamics in the accurate determination of the binding pose, an aspect that is not addressed in typical docking and scoring protocols.  相似文献   

6.
Two new docking programs FRED (OpenEye Scientific Software) and Glide (Schrödinger, Inc.) in combination with various scoring functions implemented in these programs have been evaluated against a variety of seven protein targets (cyclooxygenase-2, estrogen receptor, p38 MAP kinase, gyrase B, thrombin, gelatinase A, neuraminidase) in order to assess their accuracy in virtual screening. Sets of known inhibitors were added to and ranked relative to a random library of drug-like compounds. Performance was compared in terms of enrichment factors and CPU time consumption. Results and specific features of the two new tools are discussed and compared to previously published results using FlexX (Tripos, Inc.) as a docking engine. In addition, general criteria for the selection of docking algorithms and scoring functions based on binding-site characteristics of specific protein targets are proposed. Figure Enrichment factors obtained with FlexX, Glide and FRED docking engines in combination with different scoring functions for seven selected targets with highly variable binding sites
  相似文献   

7.
Cavasotto CN  Orry AJ  Abagyan RA 《Proteins》2003,51(3):423-433
G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in signal transmission. Drugs associated with GPCRs represent more than one fourth of the 100 top-selling drugs and are the targets of more than half of the current therapeutic agents on the market. Our methodology based on the internal coordinate mechanics (ICM) program can accurately identify the ligand-binding pocket in the currently available crystal structures of seven transmembrane (7TM) proteins [bacteriorhodopsin (BR) and bovine rhodopsin (bRho)]. The binding geometry of the ligand can be accurately predicted by ICM flexible docking with and without the loop regions, a useful finding for GPCR docking because the transmembrane regions are easier to model. We also demonstrate that the native ligand can be identified by flexible docking and scoring in 1.5% and 0.2% (for bRho and BR, respectively) of the best scoring compounds from two different types of compound database. The same procedure can be applied to the database of available chemicals to identify specific GPCR binders. Finally, we demonstrate that even if the sidechain positions in the bRho binding pocket are entirely wrong, their correct conformation can be fully restored with high accuracy (0.28 A) through the ICM global optimization with and without the ligand present. These binding site adjustments are critical for flexible docking of new ligands to known structures or for docking to GPCR homology models. The ICM docking method has the potential to be used to "de-orphanize" orphan GPCRs (oGPCRs) and to identify antagonists-agonists for GPCRs if an accurate model (experimentally and computationally validated) of the structure has been constructed or when future crystal structures are determined.  相似文献   

8.
Perola E 《Proteins》2006,64(2):422-435
In spite of recent improvements in docking and scoring methods, high false-positive rates remain a common issue in structure-based virtual screening. In this study, the distinctive features of false positives in kinase virtual screens were investigated. A series of retrospective virtual screens on kinase targets was performed on specifically designed test sets, each combining true ligands and experimentally confirmed inactive compounds. A systematic analysis of the docking poses generated for the top-ranking compounds highlighted key aspects differentiating true hits from false positives. The most recurring feature in the poses of false positives was the absence of certain key interactions known to be required for kinase binding. A systematic analysis of 444 crystal structures of ligand-bound kinases showed that at least two hydrogen bonds between the ligand and the backbone protein atoms in the kinase hinge region are present in 90% of the complexes, with very little variability across targets. Closer inspection showed that when the two hydrogen bonds are present, one of three preferred hinge-binding motifs is involved in 96.5% of the cases. Less than 10% of the false positives satisfied these two criteria in the minimized docking poses generated by our standard protocol. Ligand conformational artifacts were also shown to contribute to the occurrence of false positives in a number of cases. Application of this knowledge in the form of docking constraints and post-processing filters provided consistent improvements in virtual screening performance on all systems. The false-positive rates were significantly reduced and the enrichment factors increased by an average of twofold. On the basis of these results, a generalized two-step protocol for virtual screening on kinase targets is suggested.  相似文献   

9.
Docking programs can generate subsets of a compound collection with an increased percentage of actives against a target (enrichment) by predicting their binding mode (pose) and affinity (score), and retrieving those with the highest scores. Using the QXP and GOLD programs, we compared the ability of six single scoring functions (PLP, Ligscore, Ludi, Jain, ChemScore, PMF) and four composite scoring models (Mean Rank: MR, Rank-by-Vote: Vt, Bayesian Statistics: BS and PLS Discriminant Analysis: DA) to separate compounds that are active against CDK2 from inactives. We determined the enrichment for the entire set of actives (IC50 < 10 microM) and for three activity subsets. In all cases, the enrichment for each subset was lower than for the entire set of actives. QXP outperformed GOLD at pose prediction, but yielded only moderately better enrichments. Five to six scoring functions yielded good enrichments with GOLD poses, while typically only two worked well with QXP poses. For each program, two scoring functions generally performed better than the others (Ligscore2 and Ludi for GOLD; QXP and Jain for QXP). Composite scoring functions yielded better results than single scoring functions. The consensus approaches MR and Vt worked best when separating micromolar inhibitors from inactives. The statistical approaches BS and DA, which require training data, performed best when distinguishing between low and high nanomolar inhibitors. The key observation that all hit rate profiles for all four activity intervals for all scoring schemes for both programs are significantly better than random, is evidence that docking can be successfully applied to enrich compound collections.  相似文献   

10.
11.
ATP is an important substrate of numerous biochemical reactions in living cells. Molecular recognition of this ligand by proteins is very important for understanding enzymatic mechanisms. Considerable insight into the problem may be gained via molecular docking simulations. At the same time, standard docking protocols are often insufficient to predict correct conformations for protein-ATP complexes. Thus, in most cases the native-like solutions can be found among the docking poses, but current scoring functions have only limited ability to discriminate them from false positives. To improve the selection of correct docking solutions obtained with the GOLD software, we developed a new ranking criterion specific for ATP-protein binding. The method is based on detailed analysis of the intermolecular interactions in 40 high-resolution 3D structures of ATP-protein complexes (the training set). We found that the most important factors governing this recognition are hydrogen-bonding, stacking between adenine and aromatic protein residues, and hydrophobic contacts between adenine and protein residues. To address the latter, we applied the formalism of 3D molecular hydrophobicity potential. The results obtained were used to construct an ATP-oriented scoring criterion as a linear combination of the terms describing these intermolecular interactions. The criterion was then validated using the test set of 10 additional ATP-protein complexes. As compared with the standard scoring functions, the new ranking criterion significantly improved the selection of correct docking solutions in both sets and allowed considerable enrichment at the top of the list containing docking poses with correct solutions.  相似文献   

12.
Analogs of nantenine were docked into a modeled structure of the human 5-HT2A receptor using ICM Pro, GLIDE, and GOLD docking methods. The resultant docking scores were used to correlate with observed in vitro apparent affinity (Ke) data. The GOLD docking algorithm when used with a homology model of 5-HT2A, based on a bovine rhodopsin template and built by the program MODELLER, gives results which are most in agreement with the in vitro results. Further analysis of the docking poses among members of a C1 alkyl series of nantenine analogs, indicate that they bind to the receptor in a similar orientation, but differently than nantenine. Besides an important interaction between the protonated nitrogen of the C1 alkyl analogs and residue Asp155, we identified Ser242, Phe234, and Gly238 as key residues responsible for the affinity of these compounds for the 5-HT2A receptor. Specifically, the ability of some of these analogs to establish a H-bond with Ser242 and hydrophobic interactions with Phe234 and Gly238 appears to explain their enhanced affinity as compared to nantenine.  相似文献   

13.
14.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

15.
Ghersi D  Sanchez R 《Proteins》2009,74(2):417-424
The use of predicted binding sites (binding sites calculated from the protein structure alone) is evaluated here as a tool to focus the docking of small molecule ligands into protein structures, simulating cases where the real binding sites are unknown. The resulting approach consists of a few independent docking runs carried out on small boxes, centered on the predicted binding sites, as opposed to one larger blind docking run that covers the complete protein structure. The focused and blind approaches were compared using a set of 77 known protein-ligand complexes and 19 ligand-free structures. The focused approach is shown to: (1) identify the correct binding site more frequently than blind docking; (2) produce more accurate docking poses for the ligand; (3) require less computational time. Additionally, the results show that very few real binding sites are missed in spite of focusing on only three predicted binding sites per target protein. Overall the results indicate that, by improving the sampling in regions that are likely to correspond to binding sites, the focused docking approach increases accuracy and efficiency of protein ligand docking for those cases where the ligand-binding site is unknown. This is especially relevant in applications such as reverse virtual screening and structure-based functional annotation of proteins.  相似文献   

16.
The Chemscore function was implemented as a scoring function for the protein-ligand docking program GOLD, and its performance compared to the original Goldscore function and two consensus docking protocols, "Goldscore-CS" and "Chemscore-GS," in terms of docking accuracy, prediction of binding affinities, and speed. In the "Goldscore-CS" protocol, dockings produced with the Goldscore function are scored and ranked with the Chemscore function; in the "Chemscore-GS" protocol, dockings produced with the Chemscore function are scored and ranked with the Goldscore function. Comparisons were made for a "clean" set of 224 protein-ligand complexes, and for two subsets of this set, one for which the ligands are "drug-like," the other for which they are "fragment-like." For "drug-like" and "fragment-like" ligands, the docking accuracies obtained with Chemscore and Goldscore functions are similar. For larger ligands, Goldscore gives superior results. Docking with the Chemscore function is up to three times faster than docking with the Goldscore function. Both combined docking protocols give significant improvements in docking accuracy over the use of the Goldscore or Chemscore function alone. "Goldscore-CS" gives success rates of up to 81% (top-ranked GOLD solution within 2.0 A of the experimental binding mode) for the "clean list," but at the cost of long search times. For most virtual screening applications, "Chemscore-GS" seems optimal; search settings that give docking speeds of around 0.25-1.3 min/compound have success rates of about 78% for "drug-like" compounds and 85% for "fragment-like" compounds. In terms of producing binding energy estimates, the Goldscore function appears to perform better than the Chemscore function and the two consensus protocols, particularly for faster search settings. Even at docking speeds of around 1-2 min/compound, the Goldscore function predicts binding energies with a standard deviation of approximately 10.5 kJ/mol.  相似文献   

17.
Molecular docking has been performed to investigate the binding mode of (-)-meptazinol (MEP) with acetylcholinesterase (AChE) and to screen bis-meptazinol (bis-MEP) derivatives for preferable synthetic candidates virtually. A reliable and practical docking method for investigation of AChE ligands was established by the comparison of two widely used docking programs, FlexX and GOLD. In our hands, we had more luck using GOLD than FlexX in reproducing the experimental poses of known ligands (RMSD<1.5 A). GOLD fitness values of known ligands were also in good agreement with their activities. In the present GOLD docking protocol, (-)-MEP seemed to bind with the enzyme catalytic site in an open-gate conformation through strong hydrophobic interactions and a hydrogen bond. Virtual screening of a potential candidate compound library suggested that the most promising 15 bis-MEP derivatives on the list were mainly derived from (-)-MEP with conformations of (S,S) and (SR,RS) and with a 2- to 7-carbon linkage. Although there are still no biological results to confirm the predictive power of this method, the current study could provide an alternate tool for structural optimization of (-)-MEP as new AChE inhibitors. [Figure: see text].  相似文献   

18.
This study aimed to identify the docking and molecular mechanics-generalized born surface area (MM-GBSA) re-scoring parameters which can correlate the binding affinity and selectivity of the ligands towards oestrogen receptor β (ERβ). Three different series of ERβ ligands were used as dataset and the compounds were docked against ERβ (protein data bank (PDB) ID: 1QKM) using Glide and ArgusLab. Glide docking showed superior results when compared with ArgusLab. Docked poses were then rescored using Prime-MM-GBSA to calculate free energy binding. Correlations were made between observed activities of ERβ ligands with computationally predicted values from docking, binding energy parameters. ERβ ligands experimental binding affinity/selectivity did not correlate well with Glide and ArgusLab score. Whereas calculated Glide energy (coulomb-van der Waal interaction energy) correlated significantly with binding affinity of ERβ ligands (r2?=?0.66). MM-GBSA re-scoring showed correlation of r2?=?0.74 with selectivity of ERβ ligands. These results will aid the discovery of novel ERβ ligands with isoform selectivity.  相似文献   

19.
The cytochromes P450 (P450s) are a family of heme-containing monooxygenase enzymes involved in a variety of functions, including the metabolism of endogenous and exogenous substances in the human body. During lead optimization, and in drug development, many potential drug candidates are rejected because of the affinity they display for drug-metabolising P450s. Recently, crystal structures of human enzymes involved in drug metabolism have been determined, significantly augmenting the prospect of using structure-based design to modulate the binding and metabolizing properties of compounds against P450 proteins. An important step in the application of structure-based metabolic optimization is the accurate prediction of docking modes in heme binding proteins. In this paper we assess the performance of the docking program GOLD at predicting the binding mode of 45 heme-containing complexes. We achieved success rates of 64% and 57% for Chemscore and Goldscore respectively; these success rates are significantly lower than the value of 79% observed with both scoring functions for the full GOLD validation set. Re-parameterization of metal-acceptor interactions and lipophilicity of planar nitrogen atoms in the scoring functions resulted in a significant increase in the percentage of successful dockings against the heme binding proteins (Chemscore 73%, Goldscore 65%). The modified scoring functions will be useful in docking applications on P450 enzymes and other heme binding proteins.  相似文献   

20.
Protein‐protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein‐protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid‐body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near‐native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid‐body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set‐theoretic measure to test whether the scoring functions are capable of identifying near‐native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287–1297. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号