首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A putative glutamine synthetase (GS) was detected in a psychrophilic bacterium, Cryobacterium soli GCJ02. For gaining greater insight into its functioning, the gene was cloned and expressed in a heterologous host, Escherichia coli. The monomer enzyme with a molecular weight of 53.03 kDa was expressed primarily in cytosolic compartment. The enzyme activity was detected using glutamate and ATP. The optimum conditions of its biosynthesis were observed to be 60 °C and pH value 7.5. Its thermostability was relatively high with a half-life of 50 min at 40 °C. GS activity was enhanced in the presence of metal ions such as Mg2+ and Mn2+, whereas Fe2+, Cu2+ and Ca2+ proved inhibitory. The consensus pattern [EXE]-D-KP-[XGXGXH] in the GS lies between residues 132 and 272. The catalytic active sites consisting of EAE and NGSGMH were verified by site-directed mutagenesis. Based on the analysis of the consensus pattern, the GS/glutamate synthase cycle of C. soli GCJ02 is expected to contribute to the GS synthesic activity.  相似文献   

2.
Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS because ADP binding induces movement of Asp 50' toward this monovalent cation site, essentially forming the site. This observation supports a two-step mechanism with ordered substrate binding: ATP first binds to GS, then Glu binds and attacks ATP to form gamma-glutamyl phosphate and ADP, which complete the ammonium binding site. The third substrate, an ammonium ion, then binds to GS, and then loses a proton to form the more active species ammonia, which attacks the gamma-glutamyl phosphate to yield Gln. (5) Because the products (Glu or Gln) of the reactions catalyzed by GS are determined by the molecule (water or ammonium) attacking the intermediate gamma-glutamyl phosphate, this negatively charged ammonium binding pocket has been designed naturally for high affinity of ammonium to GS, permitting glutamine synthesis to proceed in aqueous solution.  相似文献   

3.
Gamma-glutamylcysteine synthetase (gamma-GCS, glutamate-cysteine ligase), which catalyzes the first and rate-limiting step in glutathione biosynthesis, is present in many prokaryotes and in virtually all eukaryotes. Although all eukaryotic gamma-GCS isoforms examined to date are rapidly inhibited by buthionine sulfoximine (BSO), most reports indicate that bacterial gamma-GCS is resistant to BSO. We have confirmed the latter finding with Escherichia coli gamma-GCS under standard assay conditions, showing both decreased initial binding affinity for BSO and a reduced rate of BSO-mediated inactivation compared with mammalian isoforms. We also find that substitution of Mn2+ for Mg2+ in assay mixtures increases both the initial binding affinity of BSO and the rate at which BSO causes mechanism-based inactivation. Similarly, the specificity of E. coli gamma-GCS for its amino acid substrates is broadened in the presence of Mn2+, and the rate of reaction for some very poor substrates is improved. These results suggest that divalent metal ions have a role in amino acid binding to E. coli gamma-GCS. Electron paramagnetic resonance (EPR) studies carried out with Mn2+ show that E. coli gamma-GCS binds two divalent metal ions; Kd values for Mn2+ are 1.1 microm and 82 microm, respectively. Binding of l-glutamate or l-BSO to the two Mn2+/gamma-GCS species produces additional upfield and downfield X-band EPR hyperfine lines at 45 G intervals, a result indicating that the two Mn2+ are spin-coupled and thus apparently separated by 5 A or less in the active site. Additional EPR studies in which Cu2+ replaced Mg2+ or Mn2+ suggest that Cu2+ is bound by one N and three O ligands in the gamma-GCS active site. The results are discussed in the context of the catalytic mechanism of gamma-GCS and its relationship to the more fully characterized glutamine synthetase reaction.  相似文献   

4.
gamma-Glultamylcysteine synthetase (gamma-GCS) catalyzes the first step in the de novo biosynthesis of glutathione. In trypanosomes, glutathione is conjugated to spermidine to form a unique cofactor termed trypanothione, an essential cofactor for the maintenance of redox balance in the cell. Using extensive similarity searches and sequence motif analysis we detected homology between gamma-GCS and glutamine synthetase (GS), allowing these proteins to be unified into a superfamily of carboxylate-amine/ammonia ligases. The structure of gamma-GCS, which was previously poorly understood, was modeled using the known structure of GS. Two metal-binding sites, each ligated by three conserved active site residues (n1: Glu-55, Glu-93, Glu-100; and n2: Glu-53, Gln-321, and Glu-489), are predicted to form the catalytic center of the active site, where the n1 site is expected to bind free metal and the n2 site to interact with MgATP. To elucidate the roles of the metals and their ligands in catalysis, these six residues were mutated to alanine in the Trypanosoma brucei enzyme. All mutations caused a substantial loss of activity. Most notably, E93A was able to catalyze the l-Glu-dependent ATP hydrolysis but not the peptide bond ligation, suggesting that the n1 metal plays an important role in positioning l-Glu for the reaction chemistry. The apparent K(m) values for ATP were increased for both the E489A and Q321A mutant enzymes, consistent with a role for the n2 metal in ATP binding and phosphoryl transfer. Furthermore, the apparent K(d) values for activation of E489A and Q321A by free Mg(2+) increased. Finally, substitution of Mn(2+) for Mg(2+) in the reaction rescued the catalytic deficits caused by both mutations, demonstrating that the nature of the metal ligands plays an important role in metal specificity.  相似文献   

5.
The glutamine synthetase from Bacillus cereus IFO 3131 was purified to homogeneity. The enzyme is a dodecamer with a molecular weight of approximately 600,000, and its subunit molecular weight is 50,000. Both Mg2+ and Mn2+ activated the enzyme as to the biosynthesis of L-glutamine, but, unlike in the case of the E. coli enzyme, the Mg2+-dependent activity was stimulated by the addition of Mn2+. The highest activity was obtained when 20 mM Mg2+ and 0.5 mM Mn2+ were added to the assay mixture. For each set of optimal assay conditions, the apparent Km values for glutamate, ammonia and a divalent cation X ATP complex were 1.03, 0.34, and 0.40 mM (Mn2+: ATP = 1: 1); 14.0, 0.47, and 0.91 mM (Mg2+: ATP = 4: 1); and 9.09, 0.45, and 0.77 mM (Mg2+: Mn2+: ATP = 4: 0.2: 1), respectively. At each optimum pH, the Vmax values for these reactions were 6.1 (Mn2+-dependent), 7.4 (Mg2+-dependent), and 12.9 (Mg2+ plus Mn2+-dependent) mumoles per min per mg protein, respectively. Mg2+-dependent glutamine synthetase activity was inhibited by the addition of AMP or glutamine; however, this inhibitory effect was suppressed in the case of the Mg2+ plus Mn2+-dependent reaction. These results suggest that the activity of the B. cereus glutamine synthetase is regulated by both the intracellular concentration and the ratio of Mn2+/Mg2+ in vivo. Also in the present investigation, a potent glutamine synthetase inhibitor(s) was detected in crude extracts from B. cereus.  相似文献   

6.
Previous studies [Dautry-Varsat, A., Cohen, G. N., & Stadtman, E.R. (1979) J. Biol. Chem. 254, 3124-3128; Lei, M., Aebi, U., Heidner, E. G., & Eisenberg, D. (1979) J. Biol. Chem. 254, 3129-3134] have shown that Escherichia coli glutamine synthetase (GS) can be cleaved by proteases to form a limited digestion species called nicked glutamine synthetase (GS). The present study gives the amino acid sequence of the protease-sensitive region of glutamine synthetase. The present study also shows that GS is enzymatically active, but this activity is low compared to the activity of GS. The apparent Michaelis constant value for glutamate was 90 mM for GS as compared to 3 mM for GS, while the Michaelis constant values for ATP were similar for GS and GS*. The dissociation constant values for ATP, as determined by intrinsic fluorescence measurements, were similar for GS and GS*. Glutamate decreased the dissociation constant value of ATP for GS because of synergism between the two binding sites; glutamate did not decrease the dissociation constant value of ATP for GS*. The glutamate analogue methionine sulfoximine bound very tightly to GS and inactivated the enzyme in the presence of ATP. Methionine sulfoximine did not appear to bind to GS* and did not inactivate GS* in the presence of ATP. The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine bound to GS and inactivated the enzyme by forming a covalent bond with it. Glutamate accelerated this inactivation because of the synergism between the ATP and glutamate binding sites of GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Glutamate clearance by astrocytes is critical for controlling excitatory neurotransmission and ATP is an important mediator for neuron-astrocyte interaction. However, the effect of ATP on glutamate clearance has never been examined. Here we report that treatment of RBA-2 cells, a type-2-like astrocyte cell line, with ATP and the P2X(7) receptor selective agonist 3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) decreased the Na+-dependent [3H]glutamate uptake within minutes. Mechanistic studies revealed that the decreases were augmented by removal of extracellular Mg2+ or Ca2+, and was restored by P2X7 selective antagonist , periodate-oxidized 2',3'-dialdehyde ATP (oATP), indicating that the decreases were mediated through P2X(7) receptors. Furthermore, stimulation of P2X7 receptors for 2 h inhibited both activity and protein expression of glutamine synthetase (GS), and oATP abolished the inhibition. In addition, removal of extracellular Ca(2+) and inhibition of protein kinase C (PKC) restored the ATP-decreased GS expression but failed to restore the P2X(7)-decreased [3H]glutamate uptake. Therefore, P2X7-mediated intracellular signals play a role in the down-regulation of GS activity/expression. Activation of P2X7 receptors stimulated increases in intracellular Na+ concentration ([Na+](i)) suggesting that the P2X(7)-induced increases in [Na+](i) may affect the local Na+ gradient and decrease the Na+-dependent [3H]glutamate uptake. These findings demonstrate that the P2X7-mediated decreases in glutamate uptake and glutamine synthesis were mediated through distinct mechanisms in these cells.  相似文献   

8.
9.
Concentrated cell-extract of Pseudomonas taetrolens Y-30, isolated as a methylamine-assimilating organism, formed gamma-glutamylethylamide (theanine) from glutamic acid and ethylamine in a mixture containing the alcoholic fermentation system of baker's yeast for ATP-regeneration. Glutamine synthetase (GS), probably responsible for theanine formation, was isolated from the extract of the organism grown on a medium containing 1% methylamine, 1% glycerol, 0.5% yeast extract, and 0.2% polypepton as carbon and nitrogen sources. The molecular mass was estimated to be 660 kDa by gel filtration and 55 kDa by SDS-polyacrylamide gel electrophoresis, suggesting that Ps. taetrolens Y-30 GS consists of 12 identical subunits. The enzyme required Mg2+ or Mn2+ for its activity. Under the standard reaction condition for glutamine formation (pH 8.0 with 30 mM Mg2+), GS showed 7% and 1% reactivity toward methylamine and ethylamine respectively of that to ammonia. Reactivity to the alkylamines varied with optimum pH of the reaction in response to divalent cation in the mixture: pH 11.0 was the optimum for the Mg2+ -dependent reaction with ethylamine, and pH 8.5 was the optimum for the Mn2+ -dependent reaction. In a mixture of an optimum reaction condition with 1000 mM ethylamine (at pH 8.5 with 3 mM Mn2+), reactivity increased up to 7% of the reactivity to ammonia in the standard reaction condition. The isolated GS formed theanine in the mixture with the yeast fermentation system.  相似文献   

10.
The inactivation of native glutamine synthetase (GS) from Bacillus subtilis by trypsin, chymotrypsin, or subtilisin followed pseudo-fast order kinetics. Trypsin cleaved the polypeptide chain of GS into two principal fragments, one of about 43,000 (Mr) and the other of smaller than 10,000. Chymotrypsin and subtilisin caused similar cleavage of GS. A large fragment (Mr 35,000) and one smaller than 10,000 were detected on SDS-PAGE. The nicked protein remained dodecameric, as observed on gel filtration, electrophoresis, and electron micrography. In the presence of glutamate, ATP, and Mn2+, the digestion of GS by each of the three proteases was retarded completely; however, the presence of one substrate, L-glutamate, ATP+Mn2+, or ATP+Mg2+ led to partial protection. The product, L-glutamine, did not retard but altered the susceptibility of the protease sensitive sites. Amino acid sequence analysis of the two smaller polypeptide fragments showed that the nicked region was around serine 375 and serine 311, respectively, and that both large fragments (43,000 and 35,000) were N-terminal polypeptides of GS. The serine 311 region was involved in the formation of the enzyme-substrate complex. Tyrosine 372 near serine 375 corresponded to tyrosine 397 which was adenylylated by adenyltransferase in Escherichia coli GS.  相似文献   

11.
Pathways of ammonia assimilation into glutamic acid in Bacillus azotofixans, a recently characterized nitrogen-fixing species of Bacillus, were investigated through observation by NMR spectroscopy of in vivo incorporation of 15N into glutamine and glutamic acid in the absence and presence of inhibitors of ammonia-assimilating enzymes, in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthase, and alanine dehydrogenase. In ammonia-grown cells, both the glutamine synthetase/glutamate synthase and the glutamate dehydrogenase pathways contribute to the assimilation of ammonia into glutamic acid. In nitrate-grown and nitrogen-fixing cells, the glutamine synthetase/glutamate synthase pathway was found to be predominant. NADPH-dependent glutamate dehydrogenase activity was detectable at low levels only in ammonia-grown and glutamate-grown cells. Thus, B. azotofixans differs from Bacillus polymyxa and Bacillus macerans, but resembles other N2-fixing prokaryotes studied previously, as to the pathway of ammonia assimilation during ammonia limitation. Implications of the results for an emerging pattern of ammonia assimilation by alternative pathways among nitrogen-fixing prokaryotes are discussed, as well as the utility of 15N NMR for measuring in vivo glutamate synthase activity in the cell.  相似文献   

12.
Abbott JJ  Ford JL  Phillips MA 《Biochemistry》2002,41(8):2741-2750
gamma-Glutamylcysteine synthetase (gamma-GCS) catalyzes the ATP-dependent ligation of L-Glu and L-Cys, which is the first step in de novo biosynthesis of the tripeptide glutathione. Recently it was demonstrated that gamma-GCS is a structural homologue of glutamine synthetase (GS), providing the basis to build a model for the gamma-GCS active site [Abbott et al. (2001) J. Biol. Chem. 276, 42099-42107]. Substrate binding determinants in the active site of gamma-GCS have been identified and characterized in the enzyme from the parasitic protozoa Trypanosoma brucei using this model as a guide for site-directed mutagenesis. R366 and R491 were identified as key determinants of L-Glu binding. Mutation of R366 to Ala increases the K(d) for L-Glu by 160-fold and eliminates the positive cooperativity observed for the binding of L-Glu and ATP to the wild-type enzyme, based on a rapid equilibrium random mechanism of substrate binding. Unlike the wild-type enzyme, the R366A mutant enzyme was able to form product using the substrate analogue gamma-aminobutyric acid, suggesting that R366 interacts with the alpha-carboxylate of L-Glu. Mutation of R491 to Ala decreased k(cat) for ATP hydrolysis by 70-fold; however, dipeptide product was only formed in 5% of these turnovers. These data suggest that R491 stabilizes the phosphorylated gamma-carboxylate of L-Glu during nucleophilic attack by the L-Cys to form the dipeptide product. T323, R474, and R487 were predicted to be ATP binding determinants. Mutation of each of these residues to Ala increased the apparent K(m) for ATP by 20-100-fold while having only modest effects on k(cat) or the apparent K(m)'s for the other substrates. Finally, mutation of R179, a conserved residue that is present in gamma-GCS, but not in GS, increased the apparent K(m) for both L-Cys and L-Glu.  相似文献   

13.
In most organisms, glutathione (GSH) is synthesized by the sequential action of distinct enzymes, gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase (GS). In Streptococcus agalactiae, GSH synthesis is catalyzed by a single enzyme, gamma-glutamylcysteine synthetase-glutathione synthetase (gamma-GCS-GS). The N-terminal sequence of gamma-GCS-GS is similar to Escherichia coli gamma-GCS, but the C-terminal sequence is an ATP-grasp domain more similar to d-Ala, d-Ala ligase than to any known GS. In the present studies, C-terminally and N-terminally truncated constructs were characterized in order to define the limits of the gamma-GCS and GS domains, respectively. Although WT gamma-GCS-GS is nearly uninhibited by GSH (K(i) approximately 140 mM), shorter gamma-GCS domain constructs were unexpectedly found to be strongly inhibited (K(i) approximately 15 mM), reproducing a physiologically important regulation seen in monofunctional gamma-GCS enzymes. Because studies with E. coli gamma-GCS implicate a flexible loop region in GSH binding, chimeras of S. agalactiae gamma-GCS-GS were made containing gamma-GCS domain flexible loop sequences from Enterococcus faecalis and Pasteurella multocida gamma-GCS-GS, isoforms that are inhibited by GSH. Inhibition remained S. agalactiae-like (i.e., very weak). C-Terminal constructs of gamma-GCS-GS have GS activity (0.01-0.04% of WT), but proper folding and significant GS activity required a covalently linked gamma-GCS domain. In addition, site-directed mutants in the middle region of the gamma-GCS-GS sequence established that GS activity depends on residues in a region that is also part of the gamma-GCS domain. Our results provide new insights into the structure of gamma-GCS-GS and suggest gamma-GCS-GS evolved from a monomeric gamma-GCS that became C-terminally fused to a multimeric ATP-grasp protein.  相似文献   

14.
The different roles and effectiveness of adenosine monophosphate, diphosphate and triphosphate labeled at the 6 position of the purine ring with 2,2,6,6-tetramethylpiperidine-1-oxyl in reactions catalyzed by Escherichia coli glutamine synthetase (GS) have been investigated. Our results show that the spin-labeled ATP (Tempo-ATP) serves as a substrate in the glutamine synthesis reaction and in the adenylation of E. coli glutamine synthetase catalyzed by ATP: glutamine adenylyl transferase (ATase) with essentially the same effectiveness as normal ATP. In another reaction (gamma-glutamyltransferase), Tempo ADP serves as an effector with a Km of 9.4 . 10(-8) M compared to 1.2 . 10(-8) M for the normal ADP, while covalently bonded Tempo-AMP serves as a modifier on the catalytic properties of E. coli glutamine synthetase just as the covalently bonded normal AMP does. The dissociation constants between the labeled nucleotides, Mn2+, Mg2+ and Ca2+ are in the same order of magnitude as the binding constants for those cations and the corresponding normal nucleotides. Our findings indicate that the spin-labeled nucleotides are good substitutes for the normal nucleotides in the biochemical systems studied.  相似文献   

15.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

16.
The mechanism of biosynthetic, transferase, ATPase, and transphosphorylation reactions catalyzed by unadenylylated glutamine synthetase from E. coli was studied. Activation complex(es) involved in the biosynthetic reaction are produced in the presence of either Mg2+ or Mn2+ ; however, with the Mn2+-enzyme inhibition by the product, ADP, is so great that the overall forward biosynthetic reaction cannot be detected with the known assay methods. Binding studies show that substrates (except for NH3 and NH2OH which are not reported here) can bind to the enzyme in a random manner and that binding of the ATP-glutamate, ADP-Pi or ADP-arsenate pairs is strongly synergistic. Inhibition and binding studies show that the same binding site is utilized for glutamate and glutamine in biosynthetic and transferase reactions, respectively, and that a common nucleotide binding site is used for all reactions studied. Studies of the reverse biosynthetic reaction and results of fluorescent titration experiments suggest that both arsenate and orthophosphate bind at a site which overlaps the gamma-phosphate site of nucleoside triphosphate. In the reverse biosynthetic and transferase reactions, ATP serves as a substrate for the Mn2+-enzyme but not for the Mg2+-enzyme. The ATP supported transferase activity of Mn2+-enzyme is probably facilitated by the generation of ADP through ATP hydrolysis. When AMP was the only nucleotide substrate added, it was converted to ATP with concomitant formation of two equivalents of glutamate, under the reverse biosynthetic reaction conditions, and no ADP was detected. The reversibility of 180 transfer between orthophosphate and gamma-acyl group of glutamate was confirmed. ATPase activity of Mg2+ and Mn2+ unadenylylated enzymes is about the same. Both enzymes forms catalyze transphosphorylation reactions between various purine nucleoside triphosphates and nucleoside diphosphates under biosynthetic reaction conditions. The data are consistent with the hypothesis that a single active center is utilized for all reactions studied. Two stepwise mecanisms that could explain the results are discussed.  相似文献   

17.
Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.  相似文献   

18.
Pathways of ammonia assimilation into glutamic acid were investigated in ammonia-grown and N2-fixing Clostridium kluyverii and Clostridium butyricum by measuring the specific activities of glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. C. kluyverii had NADPH-glutamate dehydrogenase with a Km of 12.0 mM for NH4+. The glutamate dehydrogenase pathway played an important role in ammonia assimilation in ammonia-grown cells but was found to play a minor role relative to that of the glutamine synthetase/NADPH-glutamate synthase pathway in nitrogen-fixing cells when the intracellular NH4+ concentration and the low affinity of the enzyme for NH4+ were taken into account. In C. butyricum grown on glucose-salt medium with ammonia or N2 as the nitrogen source, glutamate dehydrogenase activity was undetectable, and the glutamine synthetase/NADH-glutamate synthase pathway was the predominant pathway of ammonia assimilation. Under these growth conditions, C. butyricum also lacked the activity of glucose-6-phosphate dehydrogenase, which catalyzes the regeneration of NADPH from NADP+. However, high activities of glucose-6-phosphate dehydrogenase as well as of NADPH-glutamate dehydrogenase with a Km of 2.8 mM for NH4+ were present in C. butyricum after growth on complex nitrogen and carbon sources. The ammonia-assimilating pathway of N2-fixing C. butyricum, which differs from that of the previously studied Bacillus polymyxa and Bacillus macerans, is discussed in relation to possible effects of the availability of ATP and of NADPH on ammonia-assimilating pathways.  相似文献   

19.
联合固氮细菌粪产碱菌(Alcaligenesfaecalis)A1501菌体经超声破碎后,无细胞粗提液以PEG-6000分级沉淀,丙酮沉淀,再经蓝琼脂糖(BlueSepharoseCL-68)亲和层析分离、纯化。获得的纯谷氨酰胺合成酶(GS)在SDS-PAGE和4-30%梯度PAGE上均呈均一的一条带。GS亚基及整酶分子量分别为55kD和645kD,亚基由456个氨基酸残基组成。GS的Km值,在以Glu为氮源的介质中培养时分别为20mmol/L(Glu),50mmol/L(ATP)和45mmol/L(NH~+_4);在以NH~+_4为氮源的介质中培养时则分别为70mmol/L(Glu),49mmol/L(ATP)和80mmol/L(NH~+_4),表明NH~+_4培养下形成高度腺苷化的GS对Glu及NH~+_4的亲和力有所下降。  相似文献   

20.
The effects of glutamic and aspartic acids were studied during hypoperfusion of the rat isolated heart. The ischemic contracture that develops during hypoperfusion was prevented by glutamic acid. This effect was accompanied by preservation of higher tissue levels of ATP and CP, elimination of glutamate and aspartate deficiency, intensification of ammonia binding through the synthesis of glutamine, asparagine and urea by the myocardium. Nevertheless the level of free ammonia in the tissue remained fairly high. Aspartic acid had a similar but less pronounced effect on heart function and metabolism. The mechanism of contractile function preservation by amino acids appears to be connected with activation of oxidative and substrate phosphorylation in mitochondria rather than with the reduced level of free ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号