共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein decoy data sets provide a benchmark for testing scoring functions designed for fold recognition and protein homology modeling problems. It is commonly believed that statistical potentials based on reduced atomic models are better able to discriminate native-like from misfolded decoys than scoring functions based on more detailed molecular mechanics models. Recent benchmark tests on small data sets, however, suggest otherwise. In this work, we report the results of extensive decoy detection tests using an effective free energy function based on the OPLS all-atom (OPLS-AA) force field and the Surface Generalized Born (SGB) model for the solvent electrostatic effects. The OPLS-AA/SGB effective free energy is used as a scoring function to detect native protein folds among a total of 48,832 decoys for 32 different proteins from Park and Levitt's 4-state-reduced, Levitt's local-minima, Baker's ROSETTA all-atom, and Skolnick's decoy sets. Solvent electrostatic effects are included through the Surface Generalized Born (SGB) model. All structures are locally minimized without restraints. From an analysis of the individual energy components of the OPLS-AA/SGB energy function for the native and the best-ranked decoy, it is determined that a balance of the terms of the potential is responsible for the minimized energies that most successfully distinguish the native from the misfolded conformations. Different combinations of individual energy terms provide less discrimination than the total energy. The results are consistent with observations that all-atom molecular potentials coupled with intermediate level solvent dielectric models are competitive with knowledge-based potentials for decoy detection and protein modeling problems such as fold recognition and homology modeling. 相似文献
2.
In this work, we introduce a new method for fold recognition using composite secondary structures assembled from different secondary structure prediction servers for a given target sequence. An automatic, complete, and robust way of finding all possible combinations of predicted secondary structure segments (SSS) for the target sequence and clustering them into a few flexible clusters, each containing patterns with the same number of SSS, is developed. This program then takes two steps in choosing plausible homologues: (i) a SSS-based alignment excludes impossible templates whose SSS patterns are very different from any of those of the target; (ii) a residue-based alignment selects good structural templates based on sequence similarity and secondary structure similarity between the target and only those templates left in the first stage. The secondary structure of each residue in the target is selected from one of the predictions to find the best match with the template. Truncation is applied to a target where different predictions vary. In most cases, a target is also divided into N-terminal and C-terminal fragments, each of which is used as a separate subsequence. Our program was tested on the fold recognition targets from CASP3 with known PDB codes and some available targets from CASP4. The results are compared with a structural homologue list for each target produced by the CE program (Shindyalov and Bourne, Protein Eng 1998;11:739-747). The program successfully locates homologues with high Z-score and low root-mean-score deviation within the top 30-50 predictions in the overwhelming majority of cases. 相似文献
3.
The ability to separate correct models of protein structures from less correct models is of the greatest importance for protein structure prediction methods. Several studies have examined the ability of different types of energy function to detect the native, or native-like, protein structure from a large set of decoys. In contrast to earlier studies, we examine here the ability to detect models that only show limited structural similarity to the native structure. These correct models are defined by the existence of a fragment that shows significant similarity between this model and the native structure. It has been shown that the existence of such fragments is useful for comparing the performance between different fold recognition methods and that this performance correlates well with performance in fold recognition. We have developed ProQ, a neural-network-based method to predict the quality of a protein model that extracts structural features, such as frequency of atom-atom contacts, and predicts the quality of a model, as measured either by LGscore or MaxSub. We show that ProQ performs at least as well as other measures when identifying the native structure and is better at the detection of correct models. This performance is maintained over several different test sets. ProQ can also be combined with the Pcons fold recognition predictor (Pmodeller) to increase its performance, with the main advantage being the elimination of a few high-scoring incorrect models. Pmodeller was successful in CASP5 and results from the latest LiveBench, LiveBench-6, indicating that Pmodeller has a higher specificity than Pcons alone. 相似文献
4.
The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO. 相似文献
5.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc. 相似文献
6.
We present an analysis of 10 blind predictions prepared for a recent conference, “Critical Assessment of Techniques for Protein Structure Prediction.”1 The sequences of these proteins are not detectably similar to those of any protein in the structure database then available, but we attempted, by a threading method, to recognize similarity to known domain folds. Four of the 10 proteins, as we subsequently learned, do indeed show significant similarity to then-known structures. For 2 of these proteins the predictions were accurate, in the sense that a similar structure was at or near the top of the list of threading scores, and the threading alignment agreed well with the corresponding structural alignment. For the best predicted model mean alignment error relative to the optimal structural alignment was 2.7 residues, arising entirely from small “register shifts” of strands or helices. In the analysis we attempt to identify factors responsible for these successes and failures. Since our threading method does not use gap penalties, we may readily distinguish between errors arising from our prior definition of the “cores” of known structures and errors arising from inherent limitations in the threading potential. It would appear from the results that successful substructure recognition depends most critically on accurate definition of the “fold” of a database protein. This definition must correctly delineate substructures that are, and are not, likely to be conserved during protein evolution. © 1995 Wiley-Liss, Inc. 相似文献
7.
An elaborate knowledge-based energy function is designed for fold recognition. It is a residue-level single-body potential so that highly efficient dynamic programming method can be used for alignment optimization. It contains a backbone torsion term, a buried surface term, and a contact-energy term. The energy score combined with sequence profile and secondary structure information leads to an algorithm called SPARKS (Sequence, secondary structure Profiles and Residue-level Knowledge-based energy Score) for fold recognition. Compared with the popular PSI-BLAST, SPARKS is 21% more accurate in sequence-sequence alignment in ProSup benchmark and 10%, 25%, and 20% more sensitive in detecting the family, superfamily, fold similarities in the Lindahl benchmark, respectively. Moreover, it is one of the best methods for sensitivity (the number of correctly recognized proteins), alignment accuracy (based on the MaxSub score), and specificity (the average number of correctly recognized proteins whose scores are higher than the first false positives) in LiveBench 7 among more than twenty servers of non-consensus methods. The simple algorithm used in SPARKS has the potential for further improvement. This highly efficient method can be used for fold recognition on genomic scales. A web server is established for academic users on http://theory.med.buffalo.edu. 相似文献
8.
Fischer D 《Proteins》2003,51(3):434-441
To gain a better understanding of the biological role of proteins encoded in genome sequences, knowledge of their three-dimensional (3D) structure and function is required. The computational assignment of folds is becoming an increasingly important complement to experimental structure determination. In particular, fold-recognition methods aim to predict approximate 3D models for proteins bearing no sequence similarity to any protein of known structure. However, fully automated structure-prediction methods can currently produce reliable models for only a fraction of these sequences. Using a number of semiautomated procedures, human expert predictors are often able to produce more and better predictions than automated methods. We describe a novel, fully automatic, fold-recognition meta-predictor, named 3D-SHOTGUN, which incorporates some of the strategies human predictors have successfully applied. This new method is reminiscent of the so-called cooperative algorithms of Computer Vision. The input to 3D-SHOTGUN are the top models predicted by a number of independent fold-recognition servers. The meta-predictor consists of three steps: (i) assembly of hybrid models, (ii) confidence assignment, and (iii) selection. We have applied 3D-SHOTGUN to an unbiased test set of 77 newly released protein structures sharing no sequence similarity to proteins previously released. Forty-six correct rank-1 predictions were obtained, 30 of which had scores higher than that of the first incorrect prediction-a significant improvement over the performance of all individual servers. Furthermore, the predicted hybrid models were, on average, more similar to their corresponding native structures than those produced by the individual servers. This opens the possibility of generating more accurate, full-atom homology models for proteins with no sequence similarity to proteins of known structure. These improvements represent a step forward toward the wider applicability of fully automated structure-prediction methods at genome scales. 相似文献
9.
Recognizing structural similarity without significant sequence identity has proved to be a challenging task. Sequence-based and structure-based methods as well as their combinations have been developed. Here, we propose a fold-recognition method that incorporates structural information without the need of sequence-to-structure threading. This is accomplished by generating sequence profiles from protein structural fragments. The structure-derived sequence profiles allow a simple integration with evolution-derived sequence profiles and secondary-structural information for an optimized alignment by efficient dynamic programming. The resulting method (called SP(3)) is found to make a statistically significant improvement in both sensitivity of fold recognition and accuracy of alignment over the method based on evolution-derived sequence profiles alone (SP) and the method based on evolution-derived sequence profile and secondary structure profile (SP(2)). SP(3) was tested in SALIGN benchmark for alignment accuracy and Lindahl, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks for remote-homology detection and model accuracy. SP(3) is found to be the most sensitive and accurate single-method server in all benchmarks tested where other methods are available for comparison (although its results are statistically indistinguishable from the next best in some cases and the comparison is subjected to the limitation of time-dependent sequence and/or structural library used by different methods.). In LiveBench 8.0, its accuracy rivals some of the consensus methods such as ShotGun-INBGU, Pmodeller3, Pcons4, and ROBETTA. SP(3) fold-recognition server is available on http://theory.med.buffalo.edu. 相似文献
10.
Zhang Z Kochhar S Grigorov M 《Protein science : a publication of the Protein Society》2003,12(10):2291-2302
To understand the molecular basis of glycosyltransferases' (GTFs) catalytic mechanism, extensive structural information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds) to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First, GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster. Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The members of this reduced set were processed by three different fold recognition methods: 3D-PSSM, FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition methods, a value which is higher than the fold identification rate based on sequence comparison alone (48% for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold identification was not possible, we suggest several sequences as the most promising targets for a structural genomics initiative focused on the GTF protein family. 相似文献
11.
Alex T. Grigas Zhe Mei John D. Treado Zachary A. Levine Lynne Regan Corey S. O'Hern 《Protein science : a publication of the Protein Society》2020,29(9):1931-1944
The ability to consistently distinguish real protein structures from computationally generated model decoys is not yet a solved problem. One route to distinguish real protein structures from decoys is to delineate the important physical features that specify a real protein. For example, it has long been appreciated that the hydrophobic cores of proteins contribute significantly to their stability. We used two sources to obtain datasets of decoys to compare with real protein structures: submissions to the biennial Critical Assessment of protein Structure Prediction competition, in which researchers attempt to predict the structure of a protein only knowing its amino acid sequence, and also decoys generated by 3DRobot, which have user‐specified global root‐mean‐squared deviations from experimentally determined structures. Our analysis revealed that both sets of decoys possess cores that do not recapitulate the key features that define real protein cores. In particular, the model structures appear more densely packed (because of energetically unfavorable atomic overlaps), contain too few residues in the core, and have improper distributions of hydrophobic residues throughout the structure. Based on these observations, we developed a feed‐forward neural network, which incorporates key physical features of protein cores, to predict how well a computational model recapitulates the real protein structure without knowledge of the structure of the target sequence. By identifying the important features of protein structure, our method is able to rank decoy structures with similar accuracy to that obtained by state‐of‐the‐art methods that incorporate many additional features. The small number of physical features makes our model interpretable, emphasizing the importance of protein packing and hydrophobicity in protein structure prediction. 相似文献
12.
Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics
Baker ML Jiang W Bowman BR Zhou ZH Quiocho FA Rixon FJ Chiu W 《Journal of molecular biology》2003,331(2):447-456
The dispositions of 39 alpha helices of greater than 2.5 turns and four beta sheets in the major capsid protein (VP5, 149 kDa) of herpes simplex virus type 1 were identified by computational and visualization analysis from the 8.5A electron cryomicroscopy structure of the whole capsid. The assignment of helices in the VP5 upper domain was validated by comparison with the recently determined crystal structure of this region. Analysis of the spatial arrangement of helices in the middle domain of VP5 revealed that the organization of a tightly associated bundle of ten helices closely resembled that of a domain fold found in the annexin family of proteins. Structure-based sequence searches suggested that sequences in both the N and C-terminal portions of the VP5 sequence contribute to this domain. The long helices seen in the floor domain of VP5 form an interconnected network within and across capsomeres. The combined structural and sequence-based informatics has led to an architectural model of VP5. This model placed in the context of the capsid provides insights into the strategies used to achieve viral capsid stability. 相似文献
13.
蛋白质折叠问题被列为"21世纪的生物物理学"的重要课题,他是分子生物学中心法则尚未解决的一个重大生物学问题,因此预测蛋白质折叠模式是一个复杂、困难、和有挑战性的工作。为了解决该问题,我们引入了分类器集成,本文所采用的是三种分类器(LMT、RandomForest、SMO)进行集成以及188维组合理化特征来对蛋白质类别进行预测。实验证明,该方法可以有效表征蛋白质折叠模式的特性,对蛋白质序列数据实现精确分类;交叉验证和独立测试均证明本文预测准确率超过70%,比前人工作提高近10个百分点。 相似文献
14.
The ability to predict structure from sequence is particularly important for toxins, virulence factors, allergens, cytokines, and other proteins of public health importance. Many such functions are represented in the parallel beta-helix and beta-trefoil families. A method using pairwise beta-strand interaction probabilities coupled with evolutionary information represented by sequence profiles is developed to tackle these problems for the beta-helix and beta-trefoil folds. The algorithm BetaWrapPro employs a \"wrapping\" component that may capture folding processes with an initiation stage followed by processive interaction of the sequence with the already-formed motifs. BetaWrapPro outperforms all previous motif recognition programs for these folds, recognizing the beta-helix with 100% sensitivity and 99.7% specificity and the beta-trefoil with 100% sensitivity and 92.5% specificity, in crossvalidation on a database of all nonredundant known positive and negative examples of these fold classes in the PDB. It additionally aligns 88% of residues for the beta-helices and 86% for the beta-trefoils accurately (within four residues of the exact position) to the structural template, which is then used with the side-chain packing program SCWRL to produce 3D structure predictions. One striking result has been the prediction of an unexpected parallel beta-helix structure for a pollen allergen, and its recent confirmation through solution of its structure. A Web server running BetaWrapPro is available and outputs putative PDB-style coordinates for sequences predicted to form the target folds. 相似文献
15.
Taylor WR 《Journal of molecular biology》2006,357(2):676-699
A method is described to construct sets of decoy models that can be used to generate a background score distribution for protein structure comparison. The models are derived directly from the two proteins being compared and retain all the essential properties of the structures, including length, density, shape and secondary structure composition but have different folds. As each comparison involves a pair of proteins of the same length, no explicit normalisation is required to adjust for the length of the proteins being compared. This allows substructure (or domain) matches to score almost equally to the comparison of isolated domains. A normalised probability measure was derived that allows joint family/family comparison. The method was applied to some of the CASP6 models for targets with new folds. 相似文献
16.
The threading approach to protein structure prediction suffers from the limited number of substantially different folds available as templates. A method is presented for the generation of artificial protein structures, amenable to threading, by modification of native ones. The artificial structures so generated are compared to the native ones and it is shown that, within the accuracy of the pseudoenergy function or force field used, these two types of structures appear equally useful for threading. Since a multitude of pseudonative artificial structures can be generated per native structure, the pool of pseudonative template structures for threading can be enormously enlarged by the inclusion of the pseudonative artificial structures. Proteins 28:522–529, 1997. © 1997 Wiley-Liss, Inc. 相似文献
17.
Dmytro Guzenko Aleix Lafita Bohdan Monastyrskyy Andriy Kryshtafovych Jose M. Duarte 《Proteins》2019,87(12):1190-1199
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form. 相似文献
18.
Many statistical potentials were developed in last two decades for protein folding and protein structure recognition. The major difference of these potentials is on the selection of reference states to offset sampling bias. However, since these potentials used different databases and parameter cutoffs, it is difficult to judge what the best reference states are by examining the original programs. In this study, we aim to address this issue and evaluate the reference states by a unified database and programming environment. We constructed distance-specific atomic potentials using six widely-used reference states based on 1022 high-resolution protein structures, which are applied to rank modeling in six sets of structure decoys. The reference state on random-walk chain outperforms others in three decoy sets while those using ideal-gas, quasi-chemical approximation and averaging sample stand out in one set separately. Nevertheless, the performance of the potentials relies on the origin of decoy generations and no reference state can clearly outperform others in all decoy sets. Further analysis reveals that the statistical potentials have a contradiction between the universality and pertinence, and optimal reference states should be extracted based on specific application environments and decoy spaces. 相似文献
19.
Bienkowska JR 《Briefings in bioinformatics》2002,3(1):45-58
The wealth of protein sequence and structure data is greater than ever, thanks to the ongoing Genomics and Structural Genomics projects. The information available through such efforts needs to be analysed by new methods that combine both databases. One important result of genomic sequence analysis is the inference of functional homology among proteins. Until recently sequence similarity comparison was the only method for homologue inference. The new fold recognition approach reviewed in this paper enhances sequence comparison methods by including structural information in the process of protein comparison. This additional information often allows for the detection of similarities that cannot be found by methods that only use sequence information. 相似文献
20.
Lisa N. Kinch Andriy Kryshtafovych Bohdan Monastyrskyy Nick V. Grishin 《Proteins》2019,87(12):1021-1036
Protein target structures for the Critical Assessment of Structure Prediction round 13 (CASP13) were split into evaluation units (EUs) based on their structural domains, the domain organization of available templates, and the performance of servers on whole targets compared to split target domains. Eighty targets were split into 112 EUs. The EUs were classified into categories suitable for assessment of high accuracy modeling (or template-based modeling [TBM]) and topology (or free modeling [FM]) based on target difficulty. Assignment into assessment categories considered the following criteria: (a) the evolutionary relationship of target domains to existing fold space as defined by the Evolutionary Classification of Protein Domains (ECOD) database; (b) the clustering of target domains using eight objective sequence, structure, and performance measures; and (c) the placement of target domains in a scatter plot of target difficulty against server performance used in the previous CASP. Generally, target domains with good server predictions had close template homologs and were classified as TBM. Alternately, targets with poor server predictions represent a mixture of fast evolving homologs, structure analogs, and new folds, and were classified as FM or FM/TBM overlap. 相似文献