首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
An Y  Friesner RA 《Proteins》2002,48(2):352-366
In this work, we introduce a new method for fold recognition using composite secondary structures assembled from different secondary structure prediction servers for a given target sequence. An automatic, complete, and robust way of finding all possible combinations of predicted secondary structure segments (SSS) for the target sequence and clustering them into a few flexible clusters, each containing patterns with the same number of SSS, is developed. This program then takes two steps in choosing plausible homologues: (i) a SSS-based alignment excludes impossible templates whose SSS patterns are very different from any of those of the target; (ii) a residue-based alignment selects good structural templates based on sequence similarity and secondary structure similarity between the target and only those templates left in the first stage. The secondary structure of each residue in the target is selected from one of the predictions to find the best match with the template. Truncation is applied to a target where different predictions vary. In most cases, a target is also divided into N-terminal and C-terminal fragments, each of which is used as a separate subsequence. Our program was tested on the fold recognition targets from CASP3 with known PDB codes and some available targets from CASP4. The results are compared with a structural homologue list for each target produced by the CE program (Shindyalov and Bourne, Protein Eng 1998;11:739-747). The program successfully locates homologues with high Z-score and low root-mean-score deviation within the top 30-50 predictions in the overwhelming majority of cases.  相似文献   

2.
3.
The wealth of protein sequence and structure data is greater than ever, thanks to the ongoing Genomics and Structural Genomics projects. The information available through such efforts needs to be analysed by new methods that combine both databases. One important result of genomic sequence analysis is the inference of functional homology among proteins. Until recently sequence similarity comparison was the only method for homologue inference. The new fold recognition approach reviewed in this paper enhances sequence comparison methods by including structural information in the process of protein comparison. This additional information often allows for the detection of similarities that cannot be found by methods that only use sequence information.  相似文献   

4.
The three-dimensional (3D) structure prediction of proteins :is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accu- racy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%.  相似文献   

5.
Improving fold recognition without folds   总被引:4,自引:0,他引:4  
The most reliable way to align two proteins of unknown structure is through sequence-profile and profile-profile alignment methods. If the structure for one of the two is known, fold recognition methods outperform purely sequence-based alignments. Here, we introduced a novel method that aligns generalised sequence and predicted structure profiles. Using predicted 1D structure (secondary structure and solvent accessibility) significantly improved over sequence-only methods, both in terms of correctly recognising pairs of proteins with different sequences and similar structures and in terms of correctly aligning the pairs. The scores obtained by our generalised scoring matrix followed an extreme value distribution; this yielded accurate estimates of the statistical significance of our alignments. We found that mistakes in 1D structure predictions correlated between proteins from different sequence-structure families. The impact of this surprising result was that our method succeeded in significantly out-performing sequence-only methods even without explicitly using structural information from any of the two. Since AGAPE also outperformed established methods that rely on 3D information, we made it available through. If we solved the problem of CPU-time required to apply AGAPE on millions of proteins, our results could also impact everyday database searches.  相似文献   

6.
NMR offers the possibility of accurate secondary structure for proteins that would be too large for structure determination. In the absence of an X-ray crystal structure, this information should be useful as an adjunct to protein fold recognition methods based on low resolution force fields. The value of this information has been tested by adding varying amounts of artificial secondary structure data and threading a sequence through a library of candidate folds. Using a literature test set, the threading method alone has only a one-third chance of producing a correct answer among the top ten guesses. With realistic secondary structure information, one can expect a 60-80% chance of finding a homologous structure. The method has then been applied to examples with published estimates of secondary structure. This implementation is completely independent of sequence homology, and sequences are optimally aligned to candidate structures with gaps and insertions allowed. Unlike work using predicted secondary structure, we test the effect of differing amounts of relatively reliable data.  相似文献   

7.
胡始昌  江弋  林琛  邹权 《生物信息学》2012,10(2):112-115
蛋白质折叠问题被列为"21世纪的生物物理学"的重要课题,他是分子生物学中心法则尚未解决的一个重大生物学问题,因此预测蛋白质折叠模式是一个复杂、困难、和有挑战性的工作。为了解决该问题,我们引入了分类器集成,本文所采用的是三种分类器(LMT、RandomForest、SMO)进行集成以及188维组合理化特征来对蛋白质类别进行预测。实验证明,该方法可以有效表征蛋白质折叠模式的特性,对蛋白质序列数据实现精确分类;交叉验证和独立测试均证明本文预测准确率超过70%,比前人工作提高近10个百分点。  相似文献   

8.
Zhou H  Zhou Y 《Proteins》2004,55(4):1005-1013
An elaborate knowledge-based energy function is designed for fold recognition. It is a residue-level single-body potential so that highly efficient dynamic programming method can be used for alignment optimization. It contains a backbone torsion term, a buried surface term, and a contact-energy term. The energy score combined with sequence profile and secondary structure information leads to an algorithm called SPARKS (Sequence, secondary structure Profiles and Residue-level Knowledge-based energy Score) for fold recognition. Compared with the popular PSI-BLAST, SPARKS is 21% more accurate in sequence-sequence alignment in ProSup benchmark and 10%, 25%, and 20% more sensitive in detecting the family, superfamily, fold similarities in the Lindahl benchmark, respectively. Moreover, it is one of the best methods for sensitivity (the number of correctly recognized proteins), alignment accuracy (based on the MaxSub score), and specificity (the average number of correctly recognized proteins whose scores are higher than the first false positives) in LiveBench 7 among more than twenty servers of non-consensus methods. The simple algorithm used in SPARKS has the potential for further improvement. This highly efficient method can be used for fold recognition on genomic scales. A web server is established for academic users on http://theory.med.buffalo.edu.  相似文献   

9.
Novotny M  Madsen D  Kleywegt GJ 《Proteins》2004,54(2):260-270
When a new protein structure has been determined, comparison with the database of known structures enables classification of its fold as new or belonging to a known class of proteins. This in turn may provide clues about the function of the protein. A large number of fold comparison programs have been developed, but they have never been subjected to a comprehensive and critical comparative analysis. Here we describe an evaluation of 11 publicly available, Web-based servers for automatic fold comparison. Both their functionality (e.g., user interface, presentation, and annotation of results) and their performance (i.e., how well established structural similarities are recognized) were assessed. The servers were subjected to a battery of performance tests covering a broad spectrum of folds as well as special cases, such as multidomain proteins, Calpha-only models, new folds, and NMR-based models. The CATH structural classification system was used as a reference. These tests revealed the strong and weak sides of each server. On the whole, CE, DALI, MATRAS, and VAST showed the best performance, but none of the servers achieved a 100% success rate. Where no structurally similar proteins are found by any individual server, it is recommended to try one or two other servers before any conclusions concerning the novelty of a fold are put on paper.  相似文献   

10.
The study of protein structure has been driven largely by the careful inspection of experimental data by human experts. However, the rapid determination of protein structures from structural-genomics projects will make it increasingly difficult to analyse (and determine the principles responsible for) the distribution of proteins in fold space by inspection alone. Here, we demonstrate a machine-learning strategy that automatically determines the structural principles describing 45 folds. The rules learnt were shown to be both statistically significant and meaningful to protein experts. With the increasing emphasis on high-throughput experimental initiatives, machine-learning and other automated methods of analysis will become increasingly important for many biological problems.  相似文献   

11.
Protein decoy data sets provide a benchmark for testing scoring functions designed for fold recognition and protein homology modeling problems. It is commonly believed that statistical potentials based on reduced atomic models are better able to discriminate native-like from misfolded decoys than scoring functions based on more detailed molecular mechanics models. Recent benchmark tests on small data sets, however, suggest otherwise. In this work, we report the results of extensive decoy detection tests using an effective free energy function based on the OPLS all-atom (OPLS-AA) force field and the Surface Generalized Born (SGB) model for the solvent electrostatic effects. The OPLS-AA/SGB effective free energy is used as a scoring function to detect native protein folds among a total of 48,832 decoys for 32 different proteins from Park and Levitt's 4-state-reduced, Levitt's local-minima, Baker's ROSETTA all-atom, and Skolnick's decoy sets. Solvent electrostatic effects are included through the Surface Generalized Born (SGB) model. All structures are locally minimized without restraints. From an analysis of the individual energy components of the OPLS-AA/SGB energy function for the native and the best-ranked decoy, it is determined that a balance of the terms of the potential is responsible for the minimized energies that most successfully distinguish the native from the misfolded conformations. Different combinations of individual energy terms provide less discrimination than the total energy. The results are consistent with observations that all-atom molecular potentials coupled with intermediate level solvent dielectric models are competitive with knowledge-based potentials for decoy detection and protein modeling problems such as fold recognition and homology modeling.  相似文献   

12.
Yang JY  Chen X 《Proteins》2011,79(7):2053-2064
Fold recognition from amino acid sequences plays an important role in identifying protein structures and functions. The taxonomy-based method, which classifies a query protein into one of the known folds, has been shown very promising for protein fold recognition. However, extracting a set of highly discriminative features from amino acid sequences remains a challenging problem. To address this problem, we developed a new taxonomy-based protein fold recognition method called TAXFOLD. It extensively exploits the sequence evolution information from PSI-BLAST profiles and the secondary structure information from PSIPRED profiles. A comprehensive set of 137 features is constructed, which allows for the depiction of both global and local characteristics of PSI-BLAST and PSIPRED profiles. We tested TAXFOLD on four datasets and compared it with several major existing taxonomic methods for fold recognition. Its recognition accuracies range from 79.6 to 90% for 27, 95, and 194 folds, achieving an average 6.9% improvement over the best available taxonomic method. Further test on the Lindahl benchmark dataset shows that TAXFOLD is comparable with the best conventional template-based threading method at the SCOP fold level. These experimental results demonstrate that the proposed set of features is highly beneficial to protein fold recognition.  相似文献   

13.
In the fold recognition approach to structure prediction, a sequence is tested for compatibility with an already known fold. For membrane proteins, however, few folds have been determined experimentally. Here the feasibility of computing the vast majority of likely membrane protein folds is tested. The results indicate that conformation space can be effectively sampled for small numbers of helices. The vast majority of potential monomeric membrane protein structures can be represented by about 30-folds for three helices, but increases exponentially to about 1,500,000 folds for seven helices. The generated folds could serve as templates for fold recognition or as starting points for conformational searches that are well distributed throughout conformation space.  相似文献   

14.
The global connectivities in very large protein similarity networks contain traces of evolution among the proteins for detecting protein remote evolutionary relations or structural similarities. To investigate how well a protein network captures the evolutionary information, a key limitation is the intensive computation of pairwise sequence similarities needed to construct very large protein networks. In this article, we introduce label propagation on low-rank kernel approximation (LP-LOKA) for searching massively large protein networks. LP-LOKA propagates initial protein similarities in a low-rank graph by Nyström approximation without computing all pairwise similarities. With scalable parallel implementations based on distributed-memory using message-passing interface and Apache-Hadoop/Spark on cloud, LP-LOKA can search protein networks with one million proteins or more. In the experiments on Swiss-Prot/ADDA/CASP data, LP-LOKA significantly improved protein ranking over the widely used HMM-HMM or profile-sequence alignment methods utilizing large protein networks. It was observed that the larger the protein similarity network, the better the performance, especially on relatively small protein superfamilies and folds. The results suggest that computing massively large protein network is necessary to meet the growing need of annotating proteins from newly sequenced species and LP-LOKA is both scalable and accurate for searching massively large protein networks.  相似文献   

15.
In the past few years, a new generation of fold recognition methods has been developed, in which the classical sequence information is combined with information obtained from secondary structure and, sometimes, accessibility predictions. The results are promising, indicating that this approach may compete with potential-based methods (Rost B et al., 1997, J Mol Biol 270:471-480). Here we present a systematic study of the different factors contributing to the performance of these methods, in particular when applied to the problem of fold recognition of remote homologues. Our results indicate that secondary structure and accessibility prediction methods have reached an accuracy level where they are not the major factor limiting the accuracy of fold recognition. The pattern degeneracy problem is confirmed as the major source of error of these methods. On the basis of these results, we study three different options to overcome these limitations: normalization schemes, mapping of the coil state into the different zones of the Ramachandran plot, and post-threading graphical analysis.  相似文献   

16.
蛋白质折叠识别算法是蛋白质三维结构预测的重要方法之一,该方法在生物科学的许多方面得到卓有成效的应用。在过去的十年中,我们见证了一系列基于不同计算方式的蛋白质折叠识别方法。在这些计算方法中,机器学习和序列谱-序列谱比对是两种在蛋白质折叠中应用较为广泛和有效的方法。除了计算方法的进展外,不断增大的蛋白质结构数据库也是蛋白质折叠识别的预测精度不断提高的一个重要因素。在这篇文章中,我们将简要地回顾蛋白质折叠中的先进算法。另外,我们也将讨论一些可能可以应用于改进蛋白质折叠算法的策略。  相似文献   

17.
The manganese-stabilizing protein (PsbO) is an essential component of photosystem II (PSII) and is present in all oxyphotosynthetic organisms. PsbO allows correct water splitting and oxygen evolution by stabilizing the reactions driven by the manganese cluster. Despite its important role, its structure and detailed functional mechanism are still unknown. In this article we propose a structural model based on fold recognition and molecular modeling. This model has additional support from a study of the distribution of characteristics of the PsbO sequence family, such as the distribution of conserved, apolar, tree-determinants, and correlated positions. Our threading results consistently showed PsbO as an all-beta (beta) protein, with two homologous beta domains of approximately 120 amino acids linked by a flexible Proline-Glycine-Glycine (PGG) motif. These features are compatible with a general elongated and flexible architecture, in which the two domains form a sandwich-type structure with Greek key topology. The first domain is predicted to include 8 to 9 beta-strands, the second domain 6 to 7 beta-strands. An Ig-like beta-sandwich structure was selected as a template to build the 3-D model. The second domain has, between the strands, long-loops rich in Pro and Gly that are difficult to model. One of these long loops includes a highly conserved region (between P148 and P174) and a short alpha-helix (between E181 and N188)). These regions are characteristic parts of PsbO and show that the second domain is not so similar to the template. Overall, the model was able to account for much of the experimental data reported by several authors, and it would allow the detection of key residues and regions that are proposed in this article as essential for the structure and function of PsbO.  相似文献   

18.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Most homologous pairs of proteins have no significant sequence similarity to each other and are not identified by direct sequence comparison or profile-based strategies. However, multiple sequence alignments of low similarity homologues typically reveal a limited number of positions that are well conserved despite diversity of function. It may be inferred that conservation at most of these positions is the result of the importance of the contribution of these amino acids to the folding and stability of the protein. As such, these amino acids and their relative positions may define a structural signature. We demonstrate that extraction of this fold template provides the basis for the sequence database to be searched for patterns consistent with the fold, enabling identification of homologs that are not recognized by global sequence analysis. The fold template method was developed to address the need for a tool that could comprehensively search the midnight and twilight zones of protein sequence similarity without reliance on global statistical significance. Manual implementations of the fold template method were performed on three folds--immunoglobulin, c-lectin and TIM barrel. Following proof of concept of the template method, an automated version of the approach was developed. This automated fold template method was used to develop fold templates for 10 of the more populated folds in the SCOP database. The fold template method developed three-dimensional structural motifs or signatures that were able to return a diverse collection of proteins, while maintaining a low false positive rate. Although the results of the manual fold template method were more comprehensive than the automated fold template method, the diversity of the results from the automated fold template method surpassed those of current methods that rely on statistical significance to infer evolutionary relationships among divergent proteins.  相似文献   

20.
蛋白质折叠类型识别方法研究   总被引:1,自引:0,他引:1  
蛋白质折叠类型识别是一种分析蛋白质结构的重要方法.以序列相似性低于25%的822个全B类蛋白为研究对象,提取核心结构二级结构片段及片段问氢键作用信息为折叠类型特征参数,构建全B类蛋白74种折叠类型模板数据库.定义查询蛋白与折叠类型模板间二级结构匹配函数SS、氢键作用势函数BP及打分函数P,P值最小的模板所对应的折叠类型为查询蛋白的折叠类型.从SCOP1.69中随机抽取三组、每组50个全β类蛋白结构域进行预测,分辨精度分别为56%、56%和42%;对Ding等提供的检验集进行预测,总分辨精度为61.5%.结果和比对表明,此方法是一种有效的折叠类型识别方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号