首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fu G  Yuan H  Wang S  Gadda G  Weber IT 《Biochemistry》2011,50(29):6292-6294
D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 ? atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.  相似文献   

2.
We have compared the roles of two anti-apoptotic members of the Bcl2 family, Bcl-w and Bcl-x(L), in regulating the survival of sensory neurons during development. We used microinjection to introduce expression plasmids containing Bcl-w and Bcl-x(L) cDNAs in the sense and antisense orientations into the nuclei of BDNF-dependent nodose neurons and NGF-dependent trigeminal neurons at stages during and after the period of naturally occurring neuronal death. Whilst overexpression of either protein promoted neuronal survival in the absence of neurotrophins and microinjection of antisense constructs reduced neuronal survival in the presence of neurotrophins, the magnitude of these effects changed with age. Whereas Bcl-w overexpression became more effective in promoting neuronal survival with age, Bcl-x(L) overexpression became less effective, and whereas antisense Bcl-w became much more effective in killing neurotrophin-supplemented neurons with age, antisense Bcl-x(L) became much less effective in killing these neurons. There was a marked increased in Bcl-w mRNA and Bcl-w immunoreactive neurons and a decrease in Bcl-x(L) mRNA and Bcl-x(L) immunoreactive neurons in the trigeminal and nodose ganglia over this period of development. Our results demonstrate that both Bcl-w and Bcl-x(L )play an important anti-apoptotic role in regulating the survival of NGF- and BDNF-dependent neurons, and that reciprocal changes occur in the relative importance of these proteins with age. Whereas Bcl-x(L) plays a more important role during the period of naturally occurring neuronal death, Bcl-w plays a more important role at later stages.  相似文献   

3.
Yuan H  Gadda G 《Biochemistry》2011,50(5):770-779
Choline oxidase catalyzes the flavin-dependent, two-step oxidation of choline to glycine betaine with the formation of an aldehyde intermediate. In the first oxidation reaction, the alcohol substrate is initially activated to its alkoxide via proton abstraction. The substrate is oxidized via transfer of a hydride from the alkoxide α-carbon to the N(5) atom of the enzyme-bound flavin. In the wild-type enzyme, proton and hydride transfers are mechanistically and kinetically uncoupled. In this study, we have mutagenized an active site serine proximal to the C(4a) and N(5) atoms of the flavin and investigated the reactions of proton and hydride transfers by using substrate and solvent kinetic isotope effects. Replacement of Ser101 with threonine, alanine, cysteine, or valine resulted in biphasic traces in anaerobic reductions of the flavin with choline investigated in a stopped-flow spectrophotometer. Kinetic isotope effects established that the kinetic phases correspond to the proton and hydride transfer reactions catalyzed by the enzyme. Upon removal of Ser101, there is an at least 15-fold decrease in the rate constants for proton abstraction, irrespective of whether threonine, alanine, valine, or cysteine is present in the mutant enzyme. A logarithmic decrease spanning 4 orders of magnitude is seen in the rate constants for hydride transfer with increasing hydrophobicity of the side chain at position 101. This study shows that the hydrophilic character of a serine residue proximal to the C(4a) and N(5) flavin atoms is important for efficient hydride transfer.  相似文献   

4.
5.
《Inorganica chimica acta》1987,126(1):113-117
The title compound was prepared by slow crystallization from a hot aqueous solution of copper(II)- dichromate and pyridine. The structure determination was performed at room temperature on a single crystal in the triclinic space group P1, a = 5.378(1), b = 5.619(1), c = 13.569(2) Å, α = 93.32(1), β = 100.25(1), γ=98.45(1)°. Using 2026 reflections with Fo2 > (Fo2) obtained on a CAD-4 single crystal diffractometer the structure was solved by conventional Patterson and Fourier methods and full matrix least-squares refinement to R = 0.047. The structure consists of complex chains built up from two different (4 + 2) distorted copper(II) octahedra sharing common edges. These chains are linked via OCrO bonds thus forming a two-dimensional infinite network. The pyridine rings extending into the space between these layers are disordered due to rotation around the CuN bond. In the course of the refinement two favoured positions with occupation probabilities 50:50 percent were found. During thermal decomposition the compound loses pyridine and water followed by a release of oxygen to yield poly- crystalline CuCr2O4 and CuO. An intermediate phase with empirical formula Cu3O(CrO4)2 was detected by X-ray powder diffraction and its unit cell parameters were determined.  相似文献   

6.
2,2'-Anhydro-3'-deoxy-5-ethyluridine, a new pyrimidine nucleoside analog, has been examined in terms of its binding potency to uridine phosphorylase, and its conformation in solution (NMR) was studied. 2,2'-Anhydro-3'-deoxy-5-ethyluridine has a Ki value of 3.4 microM for uridine phosphorylase from rat intestinal mucosa. This value is approximately one order of magnitude lower than the Km for uridine (22 microM), the natural substrate. The presence of the 3'-OH group (in the ribo-configuration) on pyrimidine nucleoside analogs may not be considered a prerequisite for the binding to uridine phosphorylase; however, it enhances the binding in the case of flexible ligands cooperating in the process of conformation change toward a more favorable enzyme-ligand interaction. The presence of the 3'-OH group in pyrimidine nucleosides seems to be essential if the molecule is to become a substrate.  相似文献   

7.
A new method to introduce a benzyl group onto the 2'-OH of purine ribonucleoside is described. Thus, 6-chloropurine 3'-O-benzoylriboside and its 5'-O-trityl congener were condensed with benzyl alcohol using the Mitsunobu reaction to give the 2'-O-benzyl derivative. The yields were varied from 4.6 to 62.9% depending on the solvent. The product was converted to adenosine, indicating that the stereochemistry at C-2' is retained.  相似文献   

8.
Zaher HS  Shaw JJ  Strobel SA  Green R 《The EMBO journal》2011,30(12):2445-2453
The ribosome accelerates the rate of peptidyl transfer by >10(6)-fold relative to the background rate. A widely accepted model for this rate enhancement invokes entropic effects whereby the ribosome and the 2'-OH of the peptidyl-tRNA substrate precisely position the reactive moieties through an extensive network of hydrogen bonds that allows proton movement through them. Some studies, however, have called this model into question because they find the 2'-OH of the peptidyl-tRNA to be dispensable for catalysis. Here, we use an in vitro reconstituted translation system to resolve these discrepancies. We find that catalysis is at least 100-fold slower with the dA76-substituted peptidyl-tRNA substrate and that the peptidyl transferase centre undergoes a slow inactivation when the peptidyl-tRNA lacks the 2'-OH group. Additionally, the 2'-OH group was found to be critical for EFTu binding and peptide release. These findings reconcile the conflict in the literature, and support a model where interactions between active site residues and the 2'-OH of A76 of the peptidyl-tRNA are pivotal in orienting substrates in this active site for optimal catalysis.  相似文献   

9.
10.
Triplex-forming oligodeoxynucleotide 15mers, designed to bind in the antiparallel triple-helical binding motif, containing single substitutions (Z) of the four isomeric αN7-, βN7-, αN9- and βN9-2-aminopurine (ap)-deoxyribonucleosides were prepared. Their association with double-stranded DNA targets containing all four natural base pairs (X-Y) opposite the aminopurine residues was determined by quantitative DNase I footprint titration in the absence of monovalent metal cations. The corresponding association constants were found to be in a rather narrow range between 1.0 × 106 and 1.3 × 108 M–1. The following relative order in Z × X-Y base-triple stabilities was found: Z = αN7ap: T-A > A-T> C-G ~ G-C; Z = βN7ap: A-T > C-G > G-C > T-A; Z = αN9ap: A-T = G-C > T-A > C-G; and Z = βN9ap: G-C > A-T > C-G > T-A.  相似文献   

11.
Through a combination of chemical and enzymatic approaches a series of sequence-specific tubercidin-substituted ppp5'A2'p(5'A2'p)n5'A (n = 1 to about 10; 2-5A) analogues were generated. In addition to the previously developed methodology of Imai and Torrence [Imai, J., & Torrence, P.F. (1985) J. Org. Chem. 50, 1418-1420], a new approach to synthesis of 2',5'-linked oligonucleotides utilized adenosine in 3',5' linkage as a precursor to the targeted 5'-terminus of the desired product. For instance, A3'p5'A could be condensed under conditions of lead ion catalysis with tubercidin 5'-phosphate to give A3'p5'A2'p5'(c7A). Treatment with the 3',5'-specific nuclease P1 led to p5'A2'p5'(c7A). The combined use of the above procedures led to the synthesis of p5'(c7A)2'p5'A2'p5'A, p5'A2'p5'(c7A)2'p5'A, p5'A2'p5'A2'p5'(c7A), and p5'A2p5'(c7A)2'p5'(c7A), which were converted to their corresponding 5'-triphosphates by the usual methods. Evaluation of these analogues for their ability to bind to and activate the 2-5A-dependent endonuclease (RNase L) of mouse L cells showed that there were small changes (less than or equal to 10-fold) in the ability of the four tubercidin analogues to bind to RNase L. However, whenever the first and/or third adenosine nucleotide units were replaced by tubercidin, a dramatic decrease in ability to activate RNase L occurred. Only the second (from the 5'-terminus) adenosine residue could be replaced by tubercidin without any effect on RNase L activation ability.  相似文献   

12.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

13.
Thyrostimulin is a heterodimeric hormone composed of GPA2 and GPB5, and shares the thyroid-stimulating hormone receptor (TSHR). Thyrostimulin has three N-linked oligosaccharide chains, two in GPA2 and one in GPB5. The roles of these N-linked oligosaccharides in secretion, heterodimer formation and signal transduction were analyzed. Recombinant GPA2s lacking either of the two oligosaccharides were obtained from conditioned medium, whereas dual site-disrupted GPA2 and the GPB5 mutant were not expressed in either the conditioned medium or cell lysate. The binding between GPA2 and GPB5 was weaker than that between TSH subunits GPA1 and TSH beta. Neither of the oligosaccharides in GPA2 had significant effects on heterodimerization. Disruption of either of the oligosaccharides in GPA2 significantly decreased receptor activation, suggesting their critical role in receptor activation.  相似文献   

14.
15.
(E)-5-(2-bromovinyl-2'-deoxyuridine) crystallizes in the space group P2(1) with a = 12.976(1), b = 4.800(1), c = 20.385(2) A, beta = 96.88(1) degrees, Z = (two molecules a and b in the asymmetric unit). The structure has been determined by the use of 2400 diffractometer reflexions and refined by least-squares to R of 0.053. Conformational features of both molecules a and b resemble those of thymidine. The ribofuranose rings assume the rare C(3')-exo form observed also in thymidine. Similarly, the torsion angles around the glycosidic bonds (mean = 40(1) and 56(1) degrees fall in the anti range. In each molecule the best plane of the 2-bromovinyl moiety is bent out of the least-squares plane of the pyrimidine base by 6 degrees, so that the positively charged C(8)-H(8) group can donate an intramolecular hydrogen bond to 0(4) atom. Eight strong and weak intermolecular hydrogen bridges are built up between the symmetry independent and related molecules forming a complicated three dimensional hydrogen bond network.  相似文献   

16.
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond in N(4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine in the catabolism of N-linked oligosaccharides. A deficiency, or absence, of enzyme activity gives rise to aspartylglycosaminuria, the most common disorder of glycoprotein metabolism. The enzyme catalyzes the hydrolysis of a variety of asparagine and aspartyl compounds containing a free alpha-carboxyl group and a free alpha-amino group; computational studies suggest that the alpha-amino group actively participates in the catalytic mechanism. In order to study the importance of the alpha-carboxyl group and the alpha-amino group on the natural substrate to the reaction catalyzed by the enzyme, 14 analogues of the natural substrate were studied where the structure of the aspartyl group of the substrate was changed. The incremental binding energy (DeltaDeltaGb) for those analogues that were substrates was calculated. The results show that the alpha-amino group may be substituted with a group of comparable size, for the alpha-amino group contributes little, if any, to the transition state binding energy of the natural substrate. The alpha-amino group position acts as an "anchor" in the binding site for the substrate. On the other hand, the alpha-carboxyl group is necessary for enzyme activity; removal of the alpha-carboxyl group or changing it to an alpha-carboxamide group results in no hydrolysis reaction. Also, N-acetyl-D-glucosamine is not sufficient for binding to the active site for efficient hydrolysis by the enzyme. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction for the enzyme. However, the results raise a question as to an important role for the alpha-amino group in the catalytic mechanism as indicated in computational studies.  相似文献   

17.
18.
The single crystal structure of d(m5CGUAm5CG) soaked with copper(II) chloride was solved to atomic (1.3 A) resolution to study the base specificity of copper binding to double-stranded DNA. In the present copper(II) chloride-soaked structure, four crystallographically unique copper(II) complexes were observed bound to five of the six purine bases in the hexamer duplex. Covalent copper(II) binding occurred at N-7 of all four guanine bases and at one of the two adenine bases in the DNA duplex. Copper binding was not observed at the position (Ade4) located in an open solvent channel, whereas the second adenine site (Ade10) shared a complex with a guanine residue (Gua12) of a neighboring symmetry-related hexamer. The coordination geometries and distribution of these copper(II) complexes at the guanine bases in the crystal were comparable to the analogous sites in the isomorphous copper(II) chloride-soaked d(CGCGCG) crystal (Kagawa, T., Geierstanger, B. H., Wang, A. H.-J., and Ho, P.S. (1991) J. Biol. Chem. 266, 20175-20184). Thus, the decreased copper(II) binding affinity for Ade4 was not an artifact of crystal packing, but is intrinsic to the chemical properties of this purine base in duplex DNA. This suggests that the adenine bases in dilute solutions of Z-DNA and more generally other duplex DNA conformations are not susceptible to copper(II) modification. Thus, preferential copper(II) binding at guanine bases over adenine bases in double-stranded DNA may explain the observed specificity of copper(II)-induced oxidative DNA damage near guanine residues (Yamamoto, K., and Kawanishi, S. (1989) J. Biol. Chem. 264, 15435-15440; Sagripanti, J.-L., and Kraemer, K. H. (1989) J. Biol. Chem. 264, 1729-1734). The sharing of a single copper(II) complex by Ade10 and Gua12 of an adjacent hexamer suggests that additional and perhaps specific DNA-DNA interactions, as may be found in the densely packed environment of the nuclear matrix in the cell, may render N-7 of adenine bases prone to copper(II) modification.  相似文献   

19.
The phosphoinositide phosphatidylinositol 4, 5-bisphosphate (PtdIns(4,5)P(2)) is essential for many cellular processes and is linked to the etiology of numerous human diseases . PtdIns(4,5)P(2) has been indirectly implicated as a negative regulator of apoptosis ; however, it is unclear if apoptotic stimuli negatively regulate PtdIns(4,5)P(2) levels in vivo. Here, we show that two apoptotic-stress stimuli, hydrogen peroxide (H(2)O(2)) and UV irradiation, cause PtdIns(4,5)P(2) depletion during programmed cell death independently of and prior to caspase activation. Depletion of PtdIns(4,5)P(2) is essential for apoptosis because maintenance of PtdIns(4,5)P(2) levels by overexpression of PIP5Kalpha rescues cells from H(2)O(2)-induced apoptosis. PIP5Kalpha expression promotes both basal and sustained ERK1/2 activation after H(2)O(2) treatment, and importantly, pharmacological inhibition of ERK1/2 signaling blocks PIP5Kalpha-mediated cell survival. H(2)O(2) induces tyrosine phosphorylation and translocation of PIP5Kalpha away from its substrate at the plasma membrane, and both are dependent upon the activity of c-src family kinases. Furthermore, constitutively active c-src enhances tyrosine phosphorylation of PIP5Kalpha in vivo and is sufficient for the translocation of PIP5Kalpha away from the plasma membrane. These observations demonstrate that certain apoptotic stimuli initiate an essential signaling pathway during cell death, and this pathway leads to caspase-independent downregulation of PIP5Kalpha and its product PtdIns(4,5)P(2).  相似文献   

20.
Evidence suggests that p190RhoGAP (p190), a GTPase activating protein (GAP) specific for Rho, plays a role in cytokinesis. First, ectopic expression of p190 induces a multinucleated cellular phenotype. Second, endogenous p190 localizes to the cleavage furrow of dividing cells. Lastly, its levels are reduced in late mitosis by ubiquitin-mediated proteasomal degradation, consistent with the idea that low levels of p190 and high levels of active Rho are required for completion of cytokinesis. As with p190, RhoA and the RhoGEF, ECT2, have been localized to the cleavage furrow. These findings raise the question of whether p190 and ECT2 cooperate antagonistically to regulate the activity of Rho and contraction of the actomyosin ring during cytokinesis. Here we demonstrate ECT2 can, in a dose-dependent manner, reduce multinucleation induced by p190. Furthermore, endogenous p190 and ECT2 colocalize at the cleavage furrow of dividing cells and stably associate with one another in co-immunoprecipitation assays. Functional and physical interactions between p190 and ECT2 are reflected in the levels of Rho activity, as assessed by Rho pull-down assays. Together, these results suggest that co-regulation of Rho activity by p190RhoGAP and ECT2 in the cleavage furrow determines whether cells properly complete cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号