首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane-associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same period. Among these more slowly transported polypeptides, five were observed whose labeling increased much more than the average. Three of these five polypeptides resemble actin and alpha- and beta-tubulin in their electrophoretic properties.  相似文献   

2.
Abstract: We have found that the early response of axotomized rat retinal ganglion cells is characterized by the differential regulation of a number of fast axonally transported proteins. The abundance of 23 radiolabeled fast transported proteins was analyzed at 2 and 5 days after axotomy using two-dimensional gel electrophoresis. Corresponding changes in retinal GAP-43 mRNA were measured using northern analysis. Within 2 days of injury, >40% of the transported proteins analyzed, including GAP-43, showed increased labeling above control levels. Approximately 13% of transported proteins decreased below control levels, whereas the remainder did not change. Five days after axotomy, only GAP-43 and another fast transported protein, C3, continued to sustain measurable increased labeling above control levels; all previously elevated proteins appeared to have been down-regulated by this time, which corresponds to the onset of cell death. These differential changes were accompanied by parallel increases in GAP-43 mRNA. These results suggest that the molecular changes within rat retinal ganglion cells are differentially regulated within two stages subsequent to damage, initial regenerative growth followed by cell death.  相似文献   

3.
Leukaemia inhibitory factor (LIF) and nerve growth factor (NGF) are well characterized regulators of galanin expression. However, LIF knockout mice containing the rat galanin 5' proximal promoter fragment (- 2546 to + 15 bp) driving luciferase responded to axotomy in the same way as control mice. Also, LIF had no effect on reporter gene expression in vitro, neither in the presence or absence of NGF, suggesting that other factors mediate an axotomy response from the galanin promoter. We then addressed the role of nitric oxide (NO) using NGF-deprived rat dorsal root ganglion (DRG) neuron cultures infected with viral vectors containing the above-mentioned construct, and also studied endogenous galanin expression in axotomized DRG in vivo. Blocking endogenous NO in NGF-deprived DRG cultures suppressed galanin promoter activity. Consistent with this, axotomized/NGF-deprived DRG neurons expressed high levels of neuronal NO synthase (nNOS) and galanin. Further, using pharmacological NOS blockers, or adenoviral vectors expressing dominant-negative either for nNOS or soluble guanylate cyclase in vivo and in vitro, we show that the NO-cGMP pathway induces endogenous galanin in DRG neurons. We propose that both LIF and NO, acting at different promoter regions, are important for the up-regulation of galanin, and for DRG neuron survival and regeneration after axotomy.  相似文献   

4.
5.
The time course of the reaction to axotomy in the leech AP cell was determined by measuring the duration of the spontaneous spikes at different times after the operation. The axotomy performed by section of the segmental roots containing the AP axon induced an increase of the spike duration, which persisted over 30 days. A different time course was found when the axotomy was performed by nerve crush: the changes in duration of the spontaneous spikes, which occurred during the early 2 weeks, were significantly reduced afterwards. Dye staining of some cells axotomized by crushing revealed that the reversion of the changes, which had been set up by axotomy, was in some cases concomitant with the reconnection between proximal and distal axon stumps. The section of a single axonal branch was never sufficient to affect the membrane properties of the AP cells. It is concluded that the changes observed in axotomized AP cells are not produced by simple axonal injury and that the maintainance of normal properties in the somatic membrane requires the presence of at least part of the distal axon arborization.  相似文献   

6.
An identified serotonergic neuron (C1) in the cerebral ganglion of Helisoma trivolvis sprouts following axotomy and rapidly (seven to eight days) regenerates to recover its regulation of feeding motor output from neurons of the buccal ganglia. The morphologies of normal and regenerated neurons C1 were compared. Intracellular injection of the fluorescent dye, Lucifer Yellow, into neuron C1 was compared with serotonin immunofluorescent staining of the cerebral and buccal ganglia. The two techniques revealed different and complimentary representations of the morphology of neuron C1. Lucifer Yellow provided optimal staining of the soma, major axon branches, and dendritic arborization. Immunocytochemical staining revealed terminal axon branches on distant targets and showed an extensive plexus of fine fibers in the sheaths of ganglia and nerve trunks. In addition to C1, serotonin-like immunoreactivity was localized in approximately 30 other neurons in each of the paired cerebral ganglia. Only cerebral neurons C1 had axons projecting to the buccal ganglia. No neuronal somata in the buccal ganglia displayed serotonin-like immunoreactivity. Observations of regenerating neurons C1 demonstrated: Actively growing neurites, both in situ and in cell culture, displayed serotonin-like immunoreactivity; severed distal axons of C1 retained serotonin-like immunoreactivity for up to 28 days; axotomized neurons C1 regenerated to restore functional control over the feeding motor program.  相似文献   

7.
8.
To determine mechanisms of structural plasticity in adult CNS neurons, we investigated the expression of immediate early genes (IEGs) in the rat retina. Gene products of different IEG families (JUN and FOS proteins) and cAMP-responsive element binding protein (CREBP) were examined by immunohistochemistry under three different paradigms. Normal rats which were not axotomized were compared with axotomized animals, where retinal ganglion cells (RGCs) were axotomized by intraorbital optic nerve cut and retrogradely labeled with fluorogold (FG). Under these circumstances, RGCs show only transient sprouting, followed by continuous retrograde RGC degeneration. In the third group, after the optic nerve lesion, adult rats additionally received a sciatic nerve graft to the transected optic nerve stump. This allows some RGCs to regenerate an axon into the grafted nerve. In both groups, the time course of RGC survival and JUN, CREB, and FOS protein expression was monitored. In normal animals, JUN-Immunoreactivity (JUN-Ir) was not detectable in the retinal ganglion cell layer. JUN-Ir was induced in about 70% of all FG-positive RGCs 5 days after axotomy. The expression of JUN-Ir started to decline 8 days after axotomy. Only a few JUN-Ir-positive RGCs were found after 2 weeks. In transplanted animals, however, the numbers of JUN-Ir-positive RGCs were significantly higher 2 and 3 weeks after transplantation compared to animals that exclusively received axotomy. Furthermore, in grafted rats about 70% of the regenerating RGCs expressed JUN-Ir 2 weeks after grafting as compared to only 38% JUN-positive RGCs among the surviving but not regenerating RGCs. In normal animals CREBP-Ir was constitutively expressed in nearly all cells of the retinal ganglion cell layer. The decline in number of CREBP-Ir-positive cells paralleled the axotmy-induced RGC death. FOS-Ir-positive cells were not found in the ganglion cell layer at any time. These results demonstrate a selective and transient JUN expression of RGCs after axotomy which is sustained during axonal regeneration. This suggests that sciatic nerve grafts are able to regulate the expression of JUN proteins in axotomized RGCs of adult rats. 1994 John Wiley & Sons, Inc.  相似文献   

9.
Large changes in neuronal gene expression occur in adult peripheral neurons after axonal transection. In the rat superior cervical ganglion, for example, neurons that do not normally express vasoactive intestinal peptide (VIP) or galanin do so after postganglionic nerve transection. These effects of axotomy could result from a number of aspects of the surgical procedure. To test the idea that the important variable might be the disconnection of axotomized neuronal cell bodies from their target tissues, we examined the effects of producing such a disconnection by means of the compound 6-hydroxydopamine (6-OHDA), a neurotoxin that causes degeneration of sympathetic varicosities and avoids many of the complications of surgery. Two days after 6-OHDA treatment, VIP and galanin immunoreactivities had increased two- and 40-fold, respectively. Nevertheless, these increases were substantially smaller than the 30- and 300-fold changes seen after surgical axotomy. When expression of VIP and galanin was examined at the mRNA level, however, comparable increases were found after either procedure. The results indicate that chemical destruction of sympathetic varicosities produces an equivalent signal for increasing VIP and galanin mRNA as does axonal transection. The differences in the neuropeptide levels achieved suggests that peptide expression after nerve transection is regulated both at the mRNA and protein levels. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The adult rat superior cervical ganglion (SSG) contains low levels of galanin- and vasoactive intestinal peptide-(VIP) like immunoreactivity, with very few immuno-stained principal neurons. Immunoreactivity for both neuropeptides increases in these neurons after explanation or postganglionic axotomy in vivo. Northern blot analysis had demonstrated concomitant increases in mRNAs encoding these peptides. To localize cells in axotomized ganglia which increase their expression of these mRNAs, we performed in situ hybridization studies. In control SCG, only a few principal neurons contained mRNA for either galanin or VIP. After 48 h in organ culture, galanin mRNA was expressed in the majority of principal neurons. At 48 h after in vivo axotomy of both postganglionic trunks of the SCG, the internal and external carotid nerves, the distribution and number of neurons expressing galanin mRNA increased similarly to that seen in culture. Lesioning either trunk alone produced increases in galanin mRNA localized to those regions of the ganglion containing neurons that project into the lesioned trunk. Transection of the predominantly preganglionic cervical sympathetic trunk increased galanin mRNA expression in a small population of neurons that nerve trunk. The distributions of these labeled neurons, together with previous neuroanatomical studies, suggests that they had been axotomised by the lesions. Similar studies examining VIP mRNA expression demonstrated that although considerably fewer VIP mRNA expressing neurons than galanin mRNA expressing neurons were present after axotomy, the distribution of neuropeptide mRNA-positive cells were similar in both cases. These observations suggest that increases in the peptide galanin and VIP after nerve transection result from changes in the levels of their mRNAs in those neurons that have been axotomized. 1994 John Wiley & Sons, Inc.  相似文献   

11.
Single leech neurons isolated and maintained in culture sprout and form electrical and chemical synapses, as they do in vivo, retaining most of the electrical properties of the intact membrane. However, some cells, such as Retzius, Anterior Pagoda (AP) cells and motoneurons, exhibit consistent changes of biophysical characteristics, which mimic those induced by axotomy in vivo and are reversed after reconnection. To improve our understanding of the mechanisms involved in these alterations and of their physiological significance, we investigated the early changes in outward currents developed by cultured AP neurons, using the patch-clamp technique in the whole-cell recording configuration. Different currents were isolated and a differential sensitivity to the time spent in culture and to internal calcium was observed. Three potassium currents were dissected: an A-like current, a delayed rectifier and a third unidentified component. The A-like potassium current was significantly increased with neuronal age in cell culture and was a function of the internal Ca2+ concentration, whereas the two other potassium currents remained unchanged. Intracellular recordings performed from axotomized neurons of cultured ganglia revealed clear-cut alterations in spike adaptation, which might be due to changes of the A-like current. Accepted: 24 September 1998  相似文献   

12.
When neurones in bullfrog paravertebral sympathetic ganglia are studied by means of the sucrose-gap technique, muscarinic agonists produce a biphasic response (an initial hyperpolarization of ganglionic C cells followed by a depolarization of ganglionic B cells). Activation of ganglionic alpha 2-adrenoceptors promotes hyperpolarization. The present experiments with selective alpha 1- and alpha 2-adrenoceptor agonists and antagonists provided evidence for the existence of hitherto undescribed alpha 1-adrenoceptors, which are responsible for the production of depolarizing responses in these ganglia. Fifteen to twenty-five days after cutting postganglionic axons (axotomy), there was a nonselective depression of both alpha 1- and alpha 2-adrenoceptor mechanisms but little change in muscarinic responses. These results argue against the hypothesis that C cells assume all the properties of B cells after axotomy. Since the alpha-selective agonist phenylephrine failed to depolarize axotomized ganglia, it is unlikely that an alpha 1-adrenoceptor mechanism is prominent in axotomized neurones as it is in some immature adrenergic neurones. The data are consistent with the idea that axotomy selectively affects the properties of certain types of cation channels and raise questions as to the mechanisms involved in regulating the expression and maintenance of specific neurotransmitter responses on ganglionic neurones.  相似文献   

13.
Damage to the optic nerve in mammals induces retrograde degeneration and apoptosis of the retinal ganglion cell (RGC) bodies. The mechanisms that mediate the response of the neuronal cells to the axonal injury are still unknown. We have previously shown that semaphorins, axon guidance molecules with repulsive cues, are capable of mediating apoptosis in cultured neuronal cells (Shirvan, A., Ziv, I., Fleminger, G., Shina, R., He, Z., Brudo, I., Melamed, E., and Brazilai, A. (1999) J. Neurochem. 73, 961-971). In this study, we examined the involvement of semaphorins in an in vivo experimental animal model of complete axotomy of the rat optic nerve. We demonstrate that a marked induction of type III semaphorin proteins takes place in ipsilateral retinas at early stages following axotomy, well before any morphological signs of RGC apoptosis can be detected. Time course analysis revealed that a peak of expression occurred after 2-3 days and then declined. A small conserved peptide derived from semaphorin 3A that was previously shown to induce neuronal death in culture was capable of inducing RGC loss upon its intravitreous injection into the rat eye. Moreover, we demonstrate a marked inhibition of RGC loss when axotomized eyes were co-treated by intravitreous injection of function-blocking antibodies against the semaphorin 3A-derived peptide. Marked neuronal protection from degeneration was also observed when the antibodies were applied 24 h post-injury. We therefore suggest that semaphorins are key proteins that modulate the cell fate of axotomized RGC. Neutralization of the semaphorin repulsive function may serve as a promising new approach for treatment of traumatic injury in the adult mammalian central nervous system or of ophthalmologic diseases such as glaucoma and ischemic optic neuropathy that induce apoptotic RGC death.  相似文献   

14.
The mechanisms for motor neuron degeneration and regeneration in adult spinal cord following axotomy and target deprivation are not fully understood. We used a unilateral sciatic nerve avulsion model in adult rats to test the hypothesis that retrograde degeneration of motor neurons resembles apoptosis. By 21 days postlesion, the number of large motor neurons in lumbar spinal cord was reduced by approximately 30%. The death of motor neurons was confirmed using the terminal transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling method for detecting fragmentation of nuclear DNA. Motor neuron degeneration was characterized by aberrant accumulation of perikaryal phosphorylated neurofilaments. Structurally, motor neuron death was apoptosis. Apoptotic motor neurons undergo chromatolysis followed by progressive cytoplasmic and nuclear condensation with chromatin compaction into uniformly large round clumps. Prior to apoptosis, functionally active mitochondria accumulate within chromatolytic motor neurons, as determined by cytochrome c oxidase activity. These dying motor neurons sustain oxidative damage to proteins and nucleic acids within the first 7 days after injury during the progression of apoptosis, as identified by immunodetection of nitrotyrosine and hydroxyl-modified deoxyguanosine and guanosine. We conclude that the retrograde death of motor neurons in the adult spinal cord after sciatic nerve avulsion is apoptosis. Accumulation of active mitochondria within the perikaryon and oxidative damage to nucleic acids and proteins may contribute to the mechanisms for apoptosis of motor neurons in the adult spinal cord.  相似文献   

15.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   

16.
Effect of colchicine and vinblastine on identified leech neurons   总被引:1,自引:0,他引:1  
An identified neuron of the leech central nervous system is affected by the application of colchicine or vinblastine to its axon. It develops characteristic changes of membrane electrical properties, which are similar to those observed after surgical axotomy. The ionic mechanisms associated with the impulses induced by axotomy and colchicine treatment are not equivalent.  相似文献   

17.
Axotomized peripheral neurons are capable of regeneration, and the rate of regeneration can be enhanced by a conditioning lesion (i.e., a lesion prior to the lesion after which neurite outgrowth is measured). A possible signal that could trigger the conditioning lesion effect is the reduction in availability of a target‐derived factor resulting from the disconnection of a neuron from its target tissue. We tested this hypothesis with respect to nerve growth factor (NGF) and sympathetic neurons by administering an antiserum to NGF to adult mice for 7 days prior to explantation or dissociation of the superior cervical ganglion (SCG) and subsequently measuring neurite outgrowth. The antiserum treatment dramatically lowered the concentration of NGF in the SCG and increased the rate of neurite outgrowth in both explants and cell cultures. The increase in neurite outgrowth was similar in magnitude to that seen after a conditioning lesion. To determine if exogenous NGF could block the effect of a conditioning lesion, mice were injected with NGF or cytochrome C immediately prior to unilateral axotomy of the SCG, and for 7 days thereafter. A conditioning lesion effect of similar magnitude was seen in NGF‐treated and control animals. While NGF treatment increased NGF levels in the contralateral control ganglion, it did not significantly elevate levels in the axotomized ganglion. The results suggest that the decreased availability of NGF after axotomy is a sufficient stimulus to induce the conditioning lesion effect in sympathetic neurons. While NGF administration did not prevent the conditioning lesion effect, this may be due to the markedly decreased ability of sympathetic neurons to accumulate the growth factor after axotomy. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

18.
Previous work with identified Helisoma neurons has characterized an array of neuroplastic responses to axotomy that include the generation of new neuritic outgrowth, the reinnervation of target organs, and the formation of new electrical synapses. These responses are not random, but rather occur in a precise, predictable manner under a variety of culture conditions. The present investigation demonstrates that specific identified neurons display similar neuroplastic "behavior" within the living animal. In response to in situ nerve crushes, neurons B4 and B5 generate new neuritic outgrowth, neuron B4 functionally reinnervates the salivary glands, and new electrical synapses form between the left and right neurons B5. The in situ paradigm employed in the present experiments made it possible to examine responses to axotomy over longer periods than in earlier studies with organ cultures. New B5R-B5L connections, previously found to be stable over the short term in culture, gradually decreased in strength in situ, and the cells effectively uncoupled by 8 weeks after axotomy. This uncoupling did not depend upon target reinnervation and occurred in the continued presence of neurites in the buccal commissure. It is suggested that the stability of new connections is related to whether the connection previously existed in the unperturbed nervous system. The similarities between the ability of identified neurons to grow and to form synaptic connections in situ and in culture suggests that neurons are endowed with a specific program of regenerative responses that can be expressed reliably in a wide variety of environmental conditions.  相似文献   

19.
Retinal ganglion cells lose trophic responsiveness after axotomy.   总被引:11,自引:0,他引:11  
Whereas PNS neurons in culture are intrinsically responsive to peptide trophic factors, retinal ganglion cells (RGCs) are not unless they are depolarized, or their intracellular levels of cyclic AMP (cAMP) are elevated. We show here that depolarization increases cAMP in cultured RGCs sufficiently to enhance their responsiveness and that the trophic responsiveness of developing RGCs in intact retinas depends on physiological levels of activity and cAMP elevation. Responsiveness is lost after axotomy but is restored by cAMP elevation. The death of axotomized RGCs can be prevented if they are simultaneously stimulated by several trophic factors together with cAMP elevation. Thus, the death of RGCs after axotomy is not caused solely by the loss of retrograde trophic stimuli but also by a profound loss of trophic responsiveness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号