首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effectiveness of vegetated buffer strips for removing contaminants in runoff from grassed plots (slope 15%) after application of cattle slurry. Plots (8 x 8 m2 or 8 x 3 m2) received slurry or inorganic fertilizer, and then simulated rainfall (1, 7 and 21 days after slurry/fertilizer application); after each event, runoff and percolates were sampled at various distances downslope (2, 4, 6, and 8 m), and analysed for Cl-, Na+, K+ and faecal bacteria contents. Contaminant concentrations were markedly higher in runoff from the slurry-amended plots than in runoff from the fertiliser-amended plots. After the first rainfall event, some contaminant concentrations in runoff from the slurry-amended plots declined with distance downslope (i.e. with buffer strip width), supporting the relative efficacy of the strip for retaining pollutants. After the second and third rainfall events, by contrast, our results suggest remobilisation of contaminants retained during the first event. Faecal bacteria levels (especially streptococcus levels) remained high throughout the study, even in percolates and runoff collected 8 m downslope after the third rainfall event, and indeed even downslope of the adjacent fertilizer-amended plots (indicating lateral movement): this suggests that bacterial contamination may be the most significant risk arising from slurry application.  相似文献   

2.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

3.
A simple method is described for the determination of the ionic content of vegetable samples by ion chromatography with suppressed conductivity detection. Extracts of leaves of cucumber (Cucumis sativus), leaves and cotyledons of watermelon (Citrullus lanantus), cotyledons of zucchini (Cucurbitapepo), and leaves and roots of olive (Olea europaea) obtained at room temperature yielded chromatographic profiles with substantial differences in the relative contents of Cl-, NO3-, HPO4(2-) and SO4(2-) as well as of Na+, NH4+, K+, Mg2+ and Ca2+. Although NO3-, Cl- and K+ were common to each extracted sample and accounted for most of the ions present, two additional anion peaks (i.e. malate and oxalate) were detected. Among the vegetable tissues investigated, olive roots contained a considerable amount of oxalate (37 mg/g dry weight), while Na+, which is present in very low amount in extracted samples of leaves and cotyledons, represented ca. 30% of the cationic content of olive roots. In all the examined tissue extracts, K+ was the main cation (16-55 mg/g dry weight) and NO3-, Cl- and HPO4(2-) were the main inorganic anions.  相似文献   

4.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

5.
The cytoplasmic concentrations of Cl-([Cl-]i) and Ca2+ ([Ca2+]i) were measured with the fluorescent indicators N-(ethoxycarbonylmethyl)-6-methoxyquinilinum bromide (MQAE) and fura-2 in pancreatic beta-cells isolated from ob/ob mice. Steady-state [Cl-]i in unstimulated beta-cells was 34 mM, which is higher than expected from a passive distribution. Increase of the glucose concentration from 3 to 20 mM resulted in an accelerated entry of Cl- into beta-cells depleted of this ion. The exposure to 20 mM glucose did not affect steady-state [Cl-]i either in the absence or presence of furosemide inhibition of Na+, K+, 2 Cl- co-transport. Glucose-induced oscillations of [Ca2+]i were transformed into sustained elevation in the presence of 4,4' diisothiocyanato-dihydrostilbene-2,2'-disulfonic acid (H2DIDS). A similar effect was noted when replacing 25% of extracellular Cl- with the more easily permeating anions SCN-, I-, NO3- or Br-. It is concluded that glucose stimulation of the beta-cells is coupled to an increase in their Cl- permeability and that the oscillatory Ca2+ signalling is critically dependent on transmembrane Cl- fluxes.  相似文献   

6.
The activity of pyruvate dehydrogenase complex (PDC) purified from pig kidney cortex was found to be affected by various uni- and bi-valent ions. At a constant strength of 0.13 M at pH 7.8, K+, Na+, Cl-, HCO3- and HPO4(2-) had significant effects on the activity of PDC: Na+, K+ and HPO4(2-) stimulated, but HCO3- and Cl- inhibited. The stimulatory effect of Na+ was mediated by a change in the Vmax. of PDC only, whereas K+ produced an increase in Vmax. and a change in the Hill coefficient (h). The extent of stimulation produced by HPO4(2-)4 on the activity of PDC was dependent on the concentrations of K+ and Na+. Both cations at concentrations higher than 40 mM partially prevented the effect of HPO4(2-)4. Cl- and HCO3- anions decreased the Vmax. of the enzyme and increased the S0.5 for pyruvate. The effects of Na+, K+, Cl-, HPO4(2-) and HCO3- on the activity of PDC were additive. In the presence of 80 mM-K+, 20 mM-Na+, 10 mM-HPO4(2-), 20 mM-Cl- and 20 mM-HCO3- the activity of PDC was increased by 30%, the S0.5 for pyruvate was increased from 75 to 158 microM and h was decreased from 1.3 to 1.1. Under these conditions and at 1.0 mM-pyruvate, the activity of PDC was 80% of the maximal activity achieved in the presence of these ions and 4.5 mM-pyruvate. The present study suggests that PDC may operate under non-saturating concentrations for substrate in vivo.  相似文献   

7.
Using ion-selective microelectrodes, we measured the activity of H+, K+, Ca2+, and Cl- and the electrical potential both in the vacuole and in the cytoplasm of the unicellular green alga Eremosphaera viridis to obtain comparable values of the named parameters from the same object under identical conditions. The cytosol had a pH of 7.3, and activities of the other ions were 130 mM K+, 160 nM Ca2+, and 2.2 mM Cl-. We observed only small and transient light-dependent changes of the cytosolic Ca2+ activity. The vacuolar K+ activity did not differ significantly from the cytosolic one. The Ca2+ activity inside the vacuole was approximately 200 [mu]M, the pH was 5.0, and the Cl- activity was 6.2 mM. The concentrations of K+, Ca2+, and Cl- in cell extracts were measured by induction-coupled plasma spectroscopy and anion chromatography. This confirmed the vacuolar activities for K+ and Cl- obtained with ion-selective microelectrodes and indicated that approximately 60% of the vacuolar Ca2+ was buffered. The tonoplast potential was vanishingly low ([less than or equal to][plus or minus]2 mV). There was no detectable electrochemical potential gradient for K+ across the tonoplast, but there was, however, an obvious electrochemical potential gradient for Cl- (-26 mV), indicating an active accumulation of Cl- inside the vacuole.  相似文献   

8.
The relationship between the resting membrane potential and the intracellular ionic concentrations in human monocytes was investigated. Cell volume, cell water content, and amount of intracellular K+, Na+, and Cl- were measured to determine the intracellular concentrations of K+ (Ki), Na+ (Nai) and Cl- (Cli) of monocytes, and of lymphocytes and neutrophils. Values found for monocytes were similar to those for neutrophils, i.e., cell volumes were 346 and 345 micron3, respectively, cell water content 78%, and Ki, 128 and 125, Nai, 24 and 26, and Cli, 102 and 103 mmol/l cell water, respectively. Lymphocytes, however, had different values: 181 micron3 cell volume, 77% cell water content, and for Ki, Nai, and Cli, 165, 37, and 91 mmol/l cell water, respectively. The resting membrane potential of cultured human monocytes (range -30 to -40 mV), determined by measurement of the peak potential occurring within the first milliseconds after microelectrode entry, was most dependent on extracellular K+, followed by Cl-, and Na+. The membrane permeability ratio of Cl- to K+ was estimated by use of the constant field equation to be 0.23 (range 0.22 to 0.30).  相似文献   

9.
为了明确河涌和湖泊水样中COD、TP、TN和阴阳离子的植物处理效果,以及含氮污染物的植物转化规律,以前期研究中选育的再力花处理了广州市某河涌和暨南大学明湖水样.结果证明,再力花能有效地促进河涌和湖泊水样中TN、CODCr和TP的去除.处理144h后,河涌水样初始浓度为11.15mg·L-1、45mg·L-1和1.17mg·L-1的TN、CODCr和TP分别降至3.21mg·L-1、15.8mg·L-1和0.53mg·L-1;湖水初始浓度为4.50mg·L-1、36mg·L-1和0.25mg·L-1的TN、CODCr和TP分别降至2.31mg·L-1、11.7mg·L-1和0.03mg·L-1.水样中的微生物和再力花均能去除NH4+,并引起水中还原态氮发生亚硝化和硝化,但是不会明显改变Cl-、SO42-、Na+、K+、Mg2+和Ca2+等离子的浓度.  相似文献   

10.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

11.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

12.
In an effort to assess the effects of dehydration on the content of water and electrolytes (Na+, K+, Cl-, and Mg2+) in plasma and muscle tissue, eight men exercised in the heat (39.5 degrees C, 25%). Blood urine, and muscle biopsy samples were obtained before exercise and after the subjects had reduced their body weight by 2.2, 4.1, and 5.8%. On the average, plasma and muscle water (H2Om) contents were found to decline 2.4 and 1.2% for each percent decrease in body weight. Muscle sodium (Na+m) and chloride (Cl-m) content remained unchanged with dehydration, while muscle magnesium (Mg2+m) declined 12% as a result of the 5.8% dehydration. In terms of intracellular concentrations, K+i increased 7.2 and 10.6% at the 2.2 and 4.1% dehydration levels, respectively. Calculations of the resting membrane potential suggest that the water and electrolyte losses observed in these studies do not significantly alter the excitability of the muscle cell membrane.  相似文献   

13.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

14.
The elemental and water content of cultured bovine adrenal chromaffin cells and their secretory chromaffin granules have been measured and compared with isolated chromaffin granules using quick freezing, ultracryomicrotomy, and electron microprobe analysis methods. In units of millimole/kilogram dry weight (+/- S.E.) granules in situ contained: P, 523 +/- 32; K+, 124 +/- 9; S, 82 +/- 3; Cl-, 74 +/- 9; Ca2+, 13 +/- 2; Mg2+, 6 +/- 2; and Na+, -2 +/- 2. Following routine isolation in isotonic sucrose buffer, granule K and Cl- had decreased while granule Na+ increased. Cl- exhibited a consistent decrease to 35-40 mmol/kg dry weight. Granule Na+ and K+ concentrations ranged from 43 to 12 mmol/kg and 28 to 60 mmol/kg dry weight, respectively, depending on the Na+ and K+ content of the buffer. Despite the redistribution of monovalent ions, granule Ca2+, granule P, being in the form of ATP, and granule S, being in the form of protein, were not significantly changed. The stability of these elements is consistent with the existence of a stable storage complex for Ca2+, ATP, and protein. Using the granule as an internal standard with a water content of 66%, the water contents of external space, nucleus, cytoplasm, and mitochondria were estimated to be 89, 88, 82, and 70%, respectively. Wet weight concentrations for each element were calculated for granules and cytoplasm from which the transgranular concentration gradients for K+, Cl-, and Na+ were determined. Cl-, a permeant anion, was 2-fold higher in the granule than in the cytoplasm while K+, a slightly permeant cation, had an opposite distribution ratio slightly less than two. Together, the K+ and Cl- data suggest the presence of an inside-positive granule membrane potential of approximately 10-16 mV. The surprising lack of Na+ from the granule matrix suggests a hugh inward gradient for Na+ even though the Na+ content of chromaffin cell cytoplasm is low at 5 mmol/kg water. The lack of an outward Na+ gradient is important in that it indicates that the previously described electroneutral Na+-Ca2+ exchange system, by which isolated granules accumulate Ca2+, does not operate in mature granules in situ. Consequently, if chromaffin granules regulate internal calcium during stimulus secretion coupling, a mechanism other that Na+-Ca2+ exchange is necessary.  相似文献   

15.
The possible role of cerebrocortical ion homeostasis, NAD/NADH redox state and of cortical oxygen tension was investigated in the initiation of hypoxic cortical vasodilatation. In addition, changes in cerebrocortical extracellular concentrations of Na+, K+, and Cl- during anoxia were studied. The results were as follows. a) The cerebrocortical reflectance decrease, e.g. cerebral vasodilatation, lagged behind the cortical pO2 decrease by 1-2 sec, but preceded the decrease of arterial blood pressure and ECoG as well as the extracellular Na+, K+, Cl- increases by 20-30 sec. Since the cortical pO2 decreased first and the ion changes lagged behind the onset of vasodilatation by 20-30 sec, it is suggested that the CBF increase in hypoxia is mediated via the cortical pO2 decrease. b) A significant NAD reduction was already present after 20 sec. of nitrogen breathing. Since the ECoG and MABP decreased, and K+ activity increased much later than this, it is presumed that the NAD reduction during the first 30-40 sec of anoxia indicates an increased rate of glycolysis, but not mitochondrial hypoxia. c) In the predepolarization phase a 17% K+, 4% Na+, 5% Cl- increase is probably the result of a reduction of the extracellular spaces caused by water movement and by the migration of Na+ and Cl- from the extracellular to the intracellular space. The large K+, Na+, Cl- changes during terminal depolarization can be interpreted as a result of the failure of the membrane bound Na+ -K+ pump and of the altered ion permeability of the cell membranes.  相似文献   

16.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

17.
Intracellular Ca2+, K+, Cl-, and NO3- activities were measured with ion-selective microelectrodes in the liverwort Conocephalum conicum L. at rest, during dark/light changes, and in the course of action potentials triggered by light or electrical stimuli. The average free cytosolic Ca2+ concentration was 231 [plus or minus] 65 nM. We did not observe any light-dependent changes of the free cytosolic Ca2+ concentration as long as no action potential was triggered. During action potentials, on average a 2-fold increase of the free cytoplasmic Ca2+ concentration was recorded. Intracellular K+ activity was 76 [plus or minus] 10 mM. It did not depend on K+ concentration changes in the bath solution between 0.1 and 10 mM. The average equilibrium potential for K+ in the standard medium containing 1 mM K+ was -110 mV, which differed significantly from the resting potential of -151 [plus or minus] 2 mV. During action potentials, either a slight decrease or no changes in intracellular K+ activity were recorded. The average Cl- activity was 7.4 [plus or minus] 0.2 mM in the cytoplasm and 43.5 [plus or minus] 7 mM in the vacuole. The activities of NO3- were 0.63 [plus or minus] 0.05 mM in the cytoplasm and 3.0 [plus or minus] 0.3 mM in the vacuole. For both anions the vacuolar activity was 5 to 6 times higher than the cytoplasmic activity. After the light was switched off both the Cl- and the NO3- activity showed either no change or a slight increase. Illumination caused a gradual return to previous values or no change. During action potentials a slight decrease of intracellular Cl- activity was recorded. It was concluded that in Conocephalum, as in characean cells, chloride channels are involved in the depolarization phase of the action potentials. We discuss a model for the ion fluxes during an action potential in Conocephalum.  相似文献   

18.
北京西山不同人工林枯落物层的水化学性质   总被引:1,自引:0,他引:1  
通过采集降雨经枯落物后的水样,初步研究了北京西山地区油松林和栓皮栎林林下枯落物层的水化学性质.结果表明:大气降水经过林冠进入枯落物层后,油松林和栓皮栎林林下不同元素的浓度发生明显变化.枯落物水中K 、Na 、Ca2 、Mg2 、NH4 -N和NO3--N的浓度随时间的变化趋势基本一致.穿透雨经过枯落物层后,水中K 、Na 、Ca2 和Mg2 的平均浓度增加,而NH4 -N、NO3--N的平均浓度减小.其中,栓皮栎林和油松林中Ca2 浓度分别增加了7.54和5.27mg.L-1.栓皮栎林下枯落物层中K 、Na 、Ca2 、Mg2 的平均浓度高于油松林,而NH4 -N、NO3--N的平均浓度则低于油松林;经降水淋溶作用后,栓皮栎林和油松林林下枯落物归还林地的养分分别为41.59和58.12kg.hm-2,其中归还林地较多的是Ca2 ,其次是K .  相似文献   

19.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A simple method for sampling skin secretion in 1-min periods was developed for investigating the effects of progressive increases in exercise intensity on Na+, K+ and Cl- secretions from the skin of the forearm. Ten healthy male subjects performed exercise consisting of eight stepwise increases in intensity from 50 to 225 W, with a 25-W increase at each step. Exercise at each step was for 3 min followed by a 1-min recovery period. Samples of blood and skin secretion were taken during the recovery period. Significant positive correlations were found between the mean concentrations of Na+ and Cl- and between those of K+ and Cl- in the skin secretion. The concentrations of electrolytes in the skin secretion also showed significant correlations with the blood lactate concentrations. The inflection points for secretions of Na+, K+ and Cl- were 4.04, 3.61 and 3.83 mmol.l-1 of blood lactate; 64.42, 61.96 and 62.14% of maximal oxygen consumption (VO2max); and exercise intensities of 123.01, 117.65 and 125.07 W, respectively. No significant differences were observed between the value of 67.27% of VO2max or 134.00W at the onset of blood lactate accumulation (OBLA) and the inflection points. From these results we concluded that changes in electrolyte concentrations in skin secretion during incremental exercise according to this protocol were closely related with the change in the blood lactate concentration, and that the inflection points for electrolytes may have been near the exercise intensity at OBLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号