首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxygenase activity was characterized in the gill tissue of fresh-water trout. Incubation of arachidonic acid with gill preparations yielded 12-hydroxyeicosatetraenoic acid as the major product, suggesting a 12-lipoxygenase. Eicosapentaenoic acid was similarly converted to the 12-hydroxyeicosapentaenoic acid. Both arachidonic acid and docosahexaenoic acid were converted with equal apparent velocities and affinities into single monohydroxy derivatives. Analyses of the hydroxy product of docosahexaenoic acid were consistent with 14-hydroxydocosahexaenoic acid. This enzyme activity was localized to the cytosolic fraction and displayed a broad pH optimum around pH 7. The enzyme was insensitive to the cyclooxygenase inhibitors indomethacin and aspirin but activity was strongly inhibited in the presence of the lipoxygenase inhibitors, SnCl2 (5 mM), esculetin (10 microM) and eicosatetraynoic acid (100 microM).  相似文献   

2.
12-Hydroxyeicosatetraenoic acid (12-HETE) production from arachidonic acid by cerebral microvessels isolated from perfused adult murine brain was reduced by the lipoxygenase inhibitors baicalein, esculetin, gossypol, nordihydroguaiaretic acid, and quercetin. Except for quercetin and gossypol, the IC50 did not exceed 10 microM. Each inhibitor, except baicalein, also decreased microvessel prostaglandin production when present in concentrations above their IC50 value for 12-HETE. In contrast, inhibitors of the cytochrome P450 monooxygenase system, clotrimazole, metyrapone, and proadifen (SKF-525A), had little effect on microvessel 12-HETE production. Chiral phase HPLC analysis revealed that only the (S) enantiomer of 12-HETE was formed. The major microvessel metabolite of eicosapentaenoic acid co-eluted with 12-hydroxyeicosapentaenoic acid (12-HEPE) on reverse-phase HPLC and the (S) enantiomer of 12-HEPE on chiral phase HPLC. Furthermore, like 12-HETE, 12-HEPE production was blocked by lipoxygenase inhibitors. These studies demonstrate that brain microvessels produce only the (S) enantiomeric 12-hydroxy derivatives of both arachidonic acid and eicosapentaenoic acid by the action of a lipoxygenase that can be selectively inhibited by baicalein. Since arachidonic acid and eicosapentaenoic acid are available to cerebral blood vessels in certain pathological settings, these 12-hydroxy acid lipoxygenase products may mediate some of the cerebrovascular dysfunction that occurs following stroke, brain trauma, or seizures.  相似文献   

3.
Docosahexaenoic acid (22:6n‐3) is the major brain n‐3 polyunsaturated fatty acid and it is possible that docosahexaenoic acid is anti‐inflammatory in the brain as it is known to be in other tissues. Using a combination of models including the fat‐1 transgenic mouse, chronic dietary n‐3 polyunsaturated fatty acid modulation in transgenic and wild‐type mice, and acute direct brain infusion, we demonstrated that unesterified docosahexaenoic acid attenuates neuroinflammation initiated by intracerebroventricular lipopolysaccharide. Hippocampal neuroinflammation was assessed by gene expression and immunohistochemistry. Furthermore, docosahexaenoic acid protected against lipopolysaccharide‐induced neuronal loss. Acute intracerebroventricular infusion of unesterified docosahexaenoic acid or its 12/15‐lipoxygenase product and precursor to protectins and resolvins, 17S‐hydroperoxy‐docosahexaenoic acid, mimics anti‐neuroinflammatory aspects of chronically increased unesterified docosahexaenoic acid. LC‐MS/MS revealed that neuroprotectin D1 and several other docosahexaenoic acid‐derived specialized pro‐resolving mediators are present in the hippocampus. Acute intracerebroventricular infusion of 17S‐hydroperoxy‐docosahexaenoic acid increases hippocampal neuroprotectin D1 levels concomitant to attenuating neuroinflammation. These results show that unesterified docosahexaenoic acid is protective in a lipopolysaccharide‐initiated mouse model of acute neuroinflammation, at least in part, via its conversion to specialized pro‐resolving mediators; these docosahexaenoic acid stores may provide novel targets for the prevention and treatment(s) of neurological disorders with a neuroinflammatory component.

  相似文献   


4.
The generation of oxygenated products from arachidonic acid and docosahexaenoic acid by the n-9 lipoxygenase of trout gill was monitored as a function of substrate concentration and added glutathione. In the absence of added glutathione up to 50% of the substrate consumed by the lipoxygenase was ultimately converted non-enzymatically to trihydroxy derivatives of the initial n-9 hydroperoxide enzyme product. The presence of added glutathione progressively increased conversion of the respective fatty acid hydroperoxides to the n-9 monohydroxy derivatives of arachidonic and docosahexaenoic acids while concomitantly decreasing the yield of trihydroxy derivatives, consistent with its role as a cosubstrate in the peroxidase reaction. The stability and net turnover of the lipoxygenase were also significantly improved by the addition of glutathione. The relative distribution of monohydroxy and trihydroxy products from either arachidonic acid or docosahexaenoic acid were similarly affected and equally sensitive to the glutathione concentration. These data suggest that in animals, the hydroperoxides of n-6 and n-3 polyunsaturated fatty acids generated by lipoxygenases are equally metabolized by the peroxide scavenging capabilities of the tissue.  相似文献   

5.
The mammalian sperm acrosome reaction (AR) is a fusion and fenestration of sperm head membranes which is essential for fertilization. Our earlier work demonstrated that arachidonic acid could stimulate the AR 15 min after addition to hamster sperm capacitated by incubation for 4.5 h. The present study was undertaken to determine whether inhibitors of arachidonic acid metabolism could affect the stimulation of the AR by arachidonic acid and whether products of its metabolism could stimulate the AR. Phenidone or nordihydroguaiaretic acid, inhibitors of both the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism, and docosahexaenoic acid, a cyclo-oxygenase pathway inhibitor, inhibited the AR induced by arachidonic acid. PGE2, a product of the cyclo-oxygenase pathway of arachidonic acid metabolism and 5- or 12-hydroxyeicosatetraenoic acid (HETEs) products of the lipoxygenase pathway, stimulated the AR when added to sperm capacitated by incubation for 4.5 h. Prostaglandins not derived from arachidonic were also tested: PGE1 stimulated the AR, but PGF1 alpha and PGA2 did not. We suggest that arachidonic acid metabolites produced by the sperm and by the female reproductive tract are important for the mammalian sperm AR.  相似文献   

6.
Membrane-bound lipoxygenase of rat cerebral microvessels   总被引:5,自引:0,他引:5  
The microvessels isolated from rat cerebral cortex has arachidonate lipoxygenase activity, which was not due to possible contamination of the platelets. The major product was identified to be 12-hydroxyeicosatetraenoic acid. After homogenization and sonication of the microvessel preparations, the lipoxygenase activity was recovered both in the membrane- and the cytosol-fractions, whereas that in the platelets was recovered in the cytosol fraction. Membrane-bound lipoxygenase of the microvessels has apparent Km value of 3.8 microM for arachidonic acid, which was corresponded to 1/5 of that in the platelet enzyme. Microvessel lipoxygenase was inhibited by nordihydroguaiaretic acid but not by indomethacin.  相似文献   

7.
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta.  相似文献   

8.
1. The fatty acid composition of erythrocytes and leucocytes of the elasmobranch, Scyliorhinus canicula, was determined so as to indicate substrate availability for eicosanoid formation. 2. Leucocytes showed a greater degree of fatty acid unsaturation than the erythrocytes, with particularly high levels of docosahexaenoic acid (22:6,n-3). 3. The major eicosanoid precursors, arachidonic acid (20:4,n-6) and eicosapentaenoic acid (20:5,n-3), represented 13.9% and 5.2% of the total fatty acid, respectively, in erythrocytes compared with 10.7% and 6% in leucocytes. 4. Whole blood and isolated leucocytes were stimulated with calcium ionophore, A23187 and the resulting lipoxygenase products separated by reverse phase high performance liquid chromatography. 5. The main lipoxygenase products formed were 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S),6(R) dihydroxyeicosatetraenoic acid and 5- and 15-hydroxyeicosatetraenoic acid. 6. No leukotriene B4, leukotriene B5, or lipoxins were detected.  相似文献   

9.
The anti-angiogenic effects of conjugated docosahexaenoic acid (CDHA), which was prepared by an alkaline treatment of docosahexaenoic acid and contained conjugated double bonds, were investigated in vitro and in vivo. CDHA inhibited tube formation by the bovine aortic endothelial cell (BAEC), and also inhibited the proliferation of BAEC at a concentration of CDHA that suppressed tube formation, but did not influence cell migration. The inhibition of BAEC growth caused by CDHA was accompanied by a marked change in cellular morphology. Nuclear condensation and brightness were observed in Hoechst 33342-stained cells treated with CDHA, indicating that CDHA induced apoptosis in BAEC. We also evaluated the angiogenesis inhibition of CDHA in vivo. The vessel formation which was triggered by tumor cells was clearly suppressed in mice orally given CDHA. Our findings suggest that CDHA has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.  相似文献   

10.
The influence of inhibitors of different lipoxygenases (LOX) on the growth of human tumor cells with different profiles of synthesized eicosanoids was studied. The studied LOX inhibitors had virtually no influence on the growth of A549 cells actively synthesizing cyclooxygenase and lipoxygenase metabolites of arachidonic acid (AA). The inhibitor of 12-LOX, baicalein, significantly inhibited proliferation in cultures of A431 epidermoid carcinoma cells with a characteristic domination of the major lipoxygenase metabolite of AA, 12-hydroxyeicosatetraenoic acid (12-HETE), in the profile of synthesized eicosanoids and reduced to 70% the incorporation of [3H]thymidine into DNA. Treatment of these cultures with 12-HETE virtually restored the growth potential of the tumor cells. The findings suggest that the lipoxygenase metabolite of AA, 12-HETE, is a growth-limiting factor for tumor cells of definite type.  相似文献   

11.
In an attempt to elucidate the possible involvements of eicosanoids in esophageal functions and disorders, we have investigated the formation of both cyclooxygenase and lipoxygenase metabolites from 14C-arachidonic acid by rabbit esophageal tissues. Homogenates of rabbit esophageal mucosa and muscularis were incubated with 14C-arachidonic acid and after ether extraction eicosanoids were separated and quantified by reverse phase high performance liquid chromatography. The predominant cyclooxygenase products were 6-keto-PGF1 alpha, PGF2 alpha, and PGE2 for mucosa and 6-keto-PGF1 alpha, and PGE2 for muscularis. The formation of these products was inhibited both by indomethacin and the dual pathway inhibitor, nordihydrogualaretic acid (NDGA). In mucosa the major eicosanoid was 12-HETE (12-hydroxyeicosatetraenoic acid) which was inhibited by NDGA but not by indomethacin which on the contrary enhanced its formation. Additionally four polar products were synthesized which appeared to be lipoxygenase-dependent as their formation was inhibited by NDGA but not by indomethacin. Muscularis produced as a minor lipoxygenase product only 12-HETE, which was inhibited by NDGA but unchanged in the presence of indomethacin. In addition, both tissues, but mucosa more than muscularis, possessed large prostaglandin catabolizing capacity. The present findings indicate that rabbit esophageal tissues can convert 14C-arachidonic acid into lipoxygenase as well cyclo-oxygenase products which may have a role in esophageal physiology and pathophysiology.  相似文献   

12.
Since H2O2 is one of the major biologically available peroxides, its ability to support hydroperoxidase activity of highly purified soybean lipoxygenase was examined by monitoring co-oxidation of selected xenobiotics. All of the eight chemicals tested were found to be oxidized in the presence of H2O2. Tetramethylbenzidine oxidation was completely inhibited by the classical lipoxygenase inhibitor nordihydroguaiaretic acid. The reaction was enzymatic in nature and exhibited a acidic pH optimum. The data clearly indicate, for the first time, that H2O2 can efficiently replace fatty acid hydroperoxide in a xenobiotic oxidation reaction medicated by the hydroperoxidase activity of lipoxygenase.  相似文献   

13.
Purified rat brain microvessels were prepared to demonstrate the occurrence of acyl-CoA (EC 6.2.1.3) synthesis activity in the microvasculature of rat brain. Both arachidonoyl-CoA and palmitoyl-CoA synthesis activities showed an absolute requirement for ATP and CoA. This activity was strongly enhanced by magnesium chloride and inhibited by EDTA. The apparent Km values for acyl-CoA synthesis by purified rat brain microvessels were 4.0 microM and 5.8 microM for palmitic acid and arachidonic acid, respectively. The apparent Vmax values were 1.0 and 1.5 nmol X min-1 X mg protein-1 for palmitic acid and arachidonic acid, respectively. Cross-competition experiments showed inhibition of radiolabelled arachidonoyl-CoA formation by 15 microM unlabelled arachidonic acid, with a Ki of 7.1 microM, as well as by unlabelled docosahexaenoic acid, with a Ki of 8.0 microM. Unlabelled palmitic acid and arachidic acid had no inhibitory effect on arachidonoyl-CoA synthesis. In comparison, radiolabelled palmitoyl-CoA formation was inhibited competitively by 15 microM unlabelled palmitic acid, with a Ki of 5.0 microM and to a much lesser extent by arachidonic acid (Ki, 23 microM). The Vmax of palmitoyl-CoA formation obtained on incubation in the presence of the latter fatty acids was not changed. Unlabelled arachidic acid and docosahexaenoic acid had no inhibitory effect on palmitoyl-CoA synthesis. Both arachidonoyl-CoA and palmitoyl-CoA synthesis activities were thermolabile. Arachidonoyl-CoA formation was inhibited by 75% after 7 min at 40 degrees C whereas a 3-min heating treatment was sufficient to produce the same relative inhibition of palmitoyl-CoA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lipoxygenase activities in ungerminated and germinating barley grains were found to be associated exclusively with the embryos. A lipoxygenase was extracted from ungerminated embryos and partially purified by fractional precipitation with ammonium sulfate and gel-filtration. Both the crude extracts and the purified preparation appeared to contain only a fatty acid type lipoxygenase which mainly converted linolele acid to 9-hydroperoxy, trans-10, cis-12-octadecadienoic acid. The purified enzyme was inhibited by its own products, hydroperoxides, but not by 1 mM cyanide, EDTA, Hg2+ or Cu2+.  相似文献   

15.
The results of this study, carried out with purified rat Leydig cells, indicate that there are no major differences in the stimulating effects of lutropin (LH) and luliberin (LHRH) agonists on steroidogenesis via mechanisms that are dependent on Ca2+. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. All three calmodulin inhibitors used (calmidazolium, trifluoperazine and chlorpromazine) were shown to block LH- and LHRH-agonist-stimulated steroidogenesis. This probably occurred at the step of cholesterol transport to the mitochondria. Similarly, three lipoxygenase inhibitors (nordihydroguaiaretic acid, BW755c and benoxaprofen), inhibited both LH- and LHRH-agonist-stimulated steroidogenesis. The amounts of the inhibitors required were similar for LH- and LHRH-agonist-stimulated steroidogenesis. Steroidogenesis stimulated by the Ca2+ ionophore A23187 was also inhibited, but higher concentrations of the inhibitors were required. Indomethacin (a cyclo-oxygenase inhibitor) increased LHRH-agonist-stimulated steroidogenesis;this is consistent with the role of the products of arachidonic acid metabolism via the alternative, lipoxygenase, pathway. The potentiation of LH-stimulated testosterone production by LHRH agonist was unaffected by indomethacin or by lipoxygenase inhibitors at concentrations that inhibited LH-stimulated testosterone production by 75-100%. It was not possible to eliminate a role of calmodulin in modulating the potentiation, although higher concentrations of the inhibitors were generally required to negate the potentiation than to inhibit LH- or LHRH-agonist-stimulated testosterone production.  相似文献   

16.
A product of lipoxygenase (LOX) oxidation of docosahexaenoic acid (DHA), 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diH(P)DHA] was obtained through various reaction pathways that involved DHA, 17(S)-hydro(pero)xydocosahexa-4Z,7Z,11Z,13Z,15E,19Z-enoic acid [17(S)-H(P)DHA], soybean lipoxygenase (sLOX), and potato tuber lipoxygenase (ptLOX) in various combinations. The structure of the product was confirmed by HPLC, ultraviolet (UV) light spectrometry, GC-MS, tandem MS, and NMR spectroscopy. It has been found that 10,17(S)-diH(P)DHA formed by sLOX through direct oxidation of either DHA or 17(S)-H(P)DHA was apparently identical to the product of ptLOX oxidation of the latter. The sLOX- and ptLOX-derived samples of 10,17-diHDHAs coeluted under the conditions of normal, reverse, and chiral phase HPLC analyses, displayed identical UV absorption spectra with maxima at 260, 270, and 280 nm, and had similar one-dimensional and two-dimensional proton NMR spectra. Analysis of their NMR spectra led to the conclusion that 10,17-diHDHA formed by sLOX had solely 11E,13Z,15E configuration of the conjugated triene fragment, which was identical to the previously published structure of its ptLOX-derived counterpart. Based on the cis,trans geometry of the reaction products, the conclusion is made that in the tested conditions sLOX catalyzed direct double dioxygenation of DHA. Compared with the previously described two-enzyme method that involved sLOX and ptLOX, the current simplified one-enzyme procedure uses only sLOX as the catalyst of both dioxygenation steps.  相似文献   

17.
《Phytochemistry》1987,26(5):1273-1277
An inhibitor of lipoxygenase, acetonylacetone bis-phenylhydrazone (AABPH), markedly reduced the formation of the major volatile C6 products isolated by reduced pressure steam distillation-hexane extraction of wheat plant homogenates. The compound was active on plant extracts containing lipoxygenase activity and completely inhibited activity at a concentration of 2.5 μM. Two other lipoxygenase inhibitors, phenidone and nordihydroguaiaretic acid, were not as active as AABPH. Linoleate added prior to homogenization increased the quantities of certain lipoxygenase derived volatiles, whereas heat treatment caused a marked reduction in the production of all volatile compounds.  相似文献   

18.
HeLa cells incubated with 12-O-tetradecanoylphorbol-13-acetate (TPA), and rat basophilic leukemia (RBL-1) cells incubated with calcium ionophore, showed increased levels of the protease plasminogen activator. These treatments have previously been shown to stimulate the cellular metabolism of arachidonic acid. The induction of plasminogen activator in both cell types was inhibited in a dose-dependent manner by 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid, two compounds known to inhibit arachidonate metabolism via lipoxygenases. In contrast, indomethacin, which selectively inhibits arachidonate metabolism via cyclooxygenase, was inactive. The levels of four enzyme markers in HeLa cells were unchanged by treatment with TPA plus the lipoxygenase inhibitors, indicating that the inhibitors did not exert their effects on plasminogen activator via general cell toxicity. HeLa cells preincubated with [3H]arachidonate and subsequently challenged with TPA produced small amounts of material with the chromatographic mobilities and resistance to indomethacin expected of hydroxylated fatty acids derived via lipoxygenase. RBL-1 cells have been shown previously to produce leukotrienes and other lipoxygenase metabolites when treated with calcium ionophore. Plasminogen activator in HeLa cells was stimulated by up to 2.5-fold by incubation with 0.5–2 μg/ml 5-hydroxyeicosatetraenoic acid. Our results suggest that the induction of plasminogen activator in HeLa and RBL-1 cells is not mediated by prostaglandins or thromboxanes, but may be mediated or modulated by arachidonate metabolites derived via a lipoxygenase pathway.  相似文献   

19.
The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.  相似文献   

20.
Metabolism of sodium (14C)-arachidonate by bovine epithelial lens cells was studied in culture. The cells converted arachidonic acid into a major product whose formation was not inhibited by aspirin, a cyclo-oxygenase inhibitor, but was suppressed by nordihydroguaiaretic acid, a lipoxygenase inhibitor and by dexamethasone. This metabolite co-migrated with leukotriene B4 in thin layer chromatography and high pressure liquid chromatography. These data represent the first evidence for a lipoxygenase product in the lens. LTB4 could play an important role in the physiopathology of this organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号