首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
One of the two mechanisms that regulate expression of the replicase cistron in the single stranded RNA coliphages is translational coupling. This mechanism prevents ribosomes from binding at the start of the replicase cistron unless the upstream coat cistron is being translated. Genetic analysis had identified a maximal region of 132 nucleotides in the coat gene over which ribosomes should pass to activate the replicase start. Subsequent deletion studies in our laboratory had further narrowed down the regulatory region to 12 nucleotides. Here, we identify a long-distance RNA-RNA interaction of 6 base pairs as the basis of the translational polarity. The 3' side of the complementarity region is located in the coat-replicase intercistronic region, some 20 nucleotides before the start codon of the replicase. The 5' side encodes amino acids 31 and 32 of the coat protein. Mutations that disrupt the long-range interaction abolish the translational coupling. Repair of basepairing by second site base substitutions restores translational coupling.  相似文献   

2.
In previous work Qβ replicase has been used to synthesize labelled 5′ terminal segments of Qβ plus or minus strands of defined length. A procedure has now been developed which allows resynchronization of Qβ replicase at an internal position and synthesis of a labelled minus-strand segment complementary to the coat cistron ribosome binding site and the intercistronic region between the A2 (maturation) and the coat cistron. Resynchronization is accomplished by binding a ribosome to Qβ RNA and allowing Qβ replicase to initiate and elongate up to the ribosome, using unlabelled ribonucleoside triphosphates. The ribosome is dissociated by EDTA treatment and the EDTA is removed. The replicating complex remains functional after this treatment, and addition of labelled substrates leads to synchronized elongation. The radioactive part of the product recovered after a short elongation period with labelled substrates was shown to be complementary to the coat protein ribosome binding site.  相似文献   

3.
P P Pumpen  V R Bauman  A V Dishler  E Ia Gren 《Genetika》1978,14(10):1687-1695
The synthesis of RNA by polar coat protein mutants f2sus3 and Qbetaam12 under suppressor (Escherichia coli S26R1E, Su+-1; H12R8a Su+-3) and non-suppressor (E. coli AB259; S26) conditions was examined. It was demonstrated that the synthesis of viral RNA under non-suppressor conditions in the presence of rifamycin produced the same gaussian pattern of rates as the synthesis of RNA by wild type phage or non-polar coat protein mutants. However, the total amount of RNA was decreased approximately 10-fold and the peak of RNA synthesis was displaced 7--10 min later. The number of infective centers was reduced also 10-fold indicating that a certain time-lapse was required to overcome the polarity of the parental RNA, this process being of single occurrence, exclusively on the parental RNA, but not on the progeny strains. As a consequence, it was concluded that the initiation of translation at the replicase cistron starts on the nascent RNA chains within the replicative complexes and not on the fully-synthesized templates with their complete secondary structure. The data obtained are not in contradiction with the hypothesis concerning the role of the repressor complex II (replicase-RNA) to slow down the synthesis of replicase and RNA in the coat protein mutants. The polarity can not be responsible probably for the blocking of the replicase cistron on the nascent chain following the block of coat protein cistron. Therefore, it appears appropriate to assume the existence of two binding sites for the replicase as repressor which is in keeping with the conclusions of Weissmann and co-workers.  相似文献   

4.
The functionally active fragments MS2 R(-53 leads to 6) and MS2 R(-53 leads to 3) comprising the regulatory region for the replicase cistron have been isolated from MS2 RNA-coat protein complex following T1 RNase digestion. In order to obtain shorter fragments, active in coat protein binding and initiation of translation, MS2 R(-53 leads to 6) was cleaved with S1 nuclease. The results indicate that S1 nuclease attacks the most susceptible loop regions of the two hairpin helices of MSZ R(-53) leads to 6). Among the three fragments which have been isolated, only MS2 R(-35/33 leads to 6) containing the intact hairpin (b) region with initiation codon AUG is active in the coat protein binding. Functional activity exerted by another polynucleotide MS R(-17 leads to 6) supports the assumption that specific binding with the coat protein is determined by the hairpin (b) region prior to the replicase cistron.  相似文献   

5.
The present work deals with the structural-functional organization of regulatory regions of messenger RNAs. Some principles of the action of a translational repressor (coat protein) and the formation of the ribosomal initiation complex at the replicase cistron have been studied with MS2 phage RNA. When the complex of MS2 RNA with the coat protein is treated with T1 ribonuclease, the coat protein selectively protects mainly two fragments (59 and 103 nucleotides in length) from digestion; these fragments contain the intercistronic regulatory region and the beginning of the MS2 replicase cistron. These polynucleotides have been isolated in a pure state and their primary structure has been established.It has been established that both MS2 RNA fragments contain all the necessary information for specific interaction with MS2 coat protein and form a complex with it with an efficiency close to that observed in the case of native MS2 RNA. They also provide the normal polypeptide chain initiation at the replicase cistron. Enzymatic binding of the second aminoacyl-tRNA and electrophoretic analysis of N-terminal dipeptides prove that only the true initiator codon of the replicase cistron is recognized by a ribosome despite the presence of a few additional AUG triplets within the polynucleotides. Under conditions of limited hydrolysis by T1 ribonuclease, the beginning of the replicase cistron has been removed from the shortest polynucleotide leading to a complete loss of its ability to bind both the coat protein and a ribosome.Some principles of the functioning of the regulatory region in MS2 RNA as well as the nature of the initiator signal of protein biosynthesis are discussed.  相似文献   

6.
In coliphage MS2 RNA a long-distance interaction (LDI) between an internal segment of the upstream coat gene and the start region of the replicase gene prevents initiation of replicase synthesis in the absence of coat gene translation. Elongating ribosomes break up the repressor LDI and thus activate the hidden initiation site. Expression studies on partial MS2 cDNA clones identified base pairing between 1427-1433 and 1738-1744, the so-called Min Jou (MJ) interaction, as the molecular basis for the long-range coupling mechanism. Here, we examine the biological significance of this interaction for the control of replicase gene translation. The LDI was disrupted by mutations in the 3'-side and the evolutionary adaptation was monitored upon phage passaging. Two categories of pseudorevertants emerged. The first type had restored the MJ interaction but not necessarily the native sequence. The pseudorevertants of the second type acquired a compensatory substitution some 80 nt downstream of the MJ interaction that stabilizes an adjacent LDI. In one examined case we confirmed that the second site mutations had restored coat-replicase translational coupling. Our results show the importance of translational control for fitness of the phage. They also reveal that the structure that buries the replicase start extends to structure elements bordering the MJ interaction.  相似文献   

7.
A new set of short RNA templates has been prepared for functional studies in initiation of translation in vitro. Number of individual RNA fragments which contain complete or part of the initiatory region of phage fr replicase cistron were isolated from complex fr RNA--fr coat protein. Their primary structure were determined by using standard fingerprint technique and rapid gel sequencing. Secondary structure of several RNA fragments and their binding activity with phage fr and MS2 coat proteins has been also studied.  相似文献   

8.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions.  相似文献   

9.
The site of interaction of phage Qbeta coat protein with Qbeta RNA was determined by ribonuclease T1 degradation of complexes of coat protein and [32P]-RNA obtained by codialysis of the components from urea into buffer solutions. The degraded complexes were recovered by filtration through nitrocellulose filters, and bound [32P]RNA fragments were extracted and separated by polyacrylamide gel electrophoresis. Fingerprinting and further sequence analysis established that the three main fragments obtained (chain lengths 88, 71 and 27 nucleotides) all consist of sequences extending from the intercistronic region to the beginning of the replicase cistron. These results suggest that in the replication of Qbeta, as in the case of R17, coat protein acts as a translational repressor by binding to the ribosomal initiation site of the replicase cistron.  相似文献   

10.
11.
A 4-nucleotide (nt) deletion was made in the 36-nt-long intercistronic region separating the coat and replicase genes of the single-stranded RNA phage MS2. This region is the focus of several RNA structures conferring high fitness. One such element is the operator hairpin, which, in the course of infection, will bind a coat-protein dimer, thereby precluding further replicase synthesis and initiating encapsidation. Another structure is a long-distance base pairing (MJ) controlling replicase expression. The 4-nt deletion does not directly affect the operator hairpin but it disrupts the MJ pairing. Its main effect, however, is a frame shift in the overlapping lysis gene. This gene starts in the upstream coat gene, runs through the 36-nt-long intercistronic region, and ends in the downstream replicase cistron. Here we report and interpret the spectrum of solutions that emerges when the crippled phage is evolved. Four different solutions were obtained by sequencing 40 plaques. Three had cured the frame shift in the lysis gene by inserting one nt in the loop of the operator hairpin causing its inactivation. Yet these low-fitness revertants could further improve themselves when evolved. The inactivated operator was replaced by a substitute and thereafter these revertants found several ways to restore control over the replicase gene. To allow for the evolutionary enrichment of low-probability but high-fitness revertants, we passaged lysate samples before plating. Revertants obtained in this way also restored the frame shift, but not at the expense of the operator. By taking larger and larger lysates samples for such bulk evolution, ever higher-fitness and lower-frequency revertants surfaced. Only one made it back to wild type. As a rule, however, revertants moved further and further away from the wild-type sequence because restorative mutations are, in the majority of cases, selected for their capacity to improve the phenotype by optimizing one of several potential alternative RNA foldings that emerge as a result of the initial deletion. This illustrates the role of structural constraints which limit the path of subsequent restorative mutations. [Reviewing Editor: Dr. John Hulsenbeck]  相似文献   

12.
B Berkhout  R A Kastelein  J van Duin 《Gene》1985,37(1-3):171-179
In overlapping reading frames of prokaryotic mRNA, the ribosome-binding site (RBS) of the downstream cistron is part of the coding sequence of the upstream message. We have examined whether the rate of translation in Escherichia coli can be sufficiently high to preclude the use of an RBS in initiation of protein synthesis when it is part of an actively decoded reading frame. The two sets of gene overlap present in the RNA phage MS2 are used as a model system. We find that translation of an upstream cistron can fully block initiation of protein synthesis at the overlapping RBS of the downstream cistron. Nonsense mutations in the upstream gene restore the translation of the downstream gene.  相似文献   

13.
THE single stranded RNA genome of bacteriophage Qβ has been variously estimated to consist of from 3,5001 to 4,5002 nucleotides. It contains three known cistrons3, which correspond to three of the four Qβ-specific proteins synthesized in vivo and in vitro4–6. These are: (1) the gene for the maturation or A protein (molecular weight 41,000 (refs. 4, 5)), (2) that for the major coat protein of the virus (molecular weight 14,000 (ref. 9)) and (3) the gene for the phage-specific subunit of the Qβ replicase (molecular weight 64,000 (ref. 10) or 69,000 (ref. 24)), listed in the probable order7,8 that they occur on the Qβ RNA. The fourth Qβ-specific protein, A1 or IIb (molecular weight 36,000 (refs. 4–6, 10)), has recently been shown by Weiner and Weber to have an N-terminal sequence which is identical (for eight amino-acids) to that of the coat protein7. Because increased amounts of A1 appear in virus particles grown in cells containing a UGA suppressor, Weiner and Weber postulate7 that this protein is the product of natural read-through at the UGA termination signal of the Qβ coat cistron. Such read-through (involving about 600 nucleotides) could occur entirely within a large “intercistronic” region between the coat and replicase genes, or could involve translation, either in or out of phase, of the replicase cistron. In hopes of distinguishing between these alternatives, I have isolated and examined the nucleotide sequence of the region surrounding the initiator codon of the Qβ replicase gene.  相似文献   

14.
J F Atkins  J A Steitz  C W Anderson  P Model 《Cell》1979,18(2):247-256
The main binding site for mammalian ribosomes on the single-stranded RNA of bacteriophage MS2 is located nine tenths of the way through the coat protein gene. Translation initiated at an AUG triplet in the +1 frame yields a 75 amino acid polypeptide which terminates within the synthetase gene at a UAA codon, also in the +1 frame. Partial amino acid sequence analysis of the product synthesized in relatively large amounts by mammalian ribosomes confirms this assignment of the overlapping cistron. The same protein is made in an E. coli cell-free system, but only in very small amounts. Analysis of the translation products directed by RNA from op3, a UGA nonsense mutant of phage f2, identifies the overlapping cistron as a lysis gene. In this paper we show that the op3 mutation is a C yield U transition occurring in the second codon of the synthetase cistron, which explains the lowered production of phage replicase (as well as lack of lysis) upon op3 infection of nonpermissive cells. We discuss the properties of the overlapping gene in relation to its lysis function, recognition of the lysis initiator region by E. coli versus eucaryotic ribosomes and op3 as a ribosome binding site mutant for the f2 synthetase cistron.  相似文献   

15.
The RNA of bacteriophage MS2 codes for three viral proteins: the coat protein, the A protein and the replicase. Upon infection of various amber suppressor strains of Escherichia coli, we found a fourth viral protein, the synthesis of which was specifically dependent on the presence of an amber suppressor gene. It is shown that this polypeptide is formed by reading through the natural termination signal of the A protein cistron. This cistron therefore terminates with the nonsense codon UAG. The observed prolongation accounts for the addition of some 30 amino acids. Unlike the normal A protein, the longer polypeptide is probably not incorporated into mature phage particles.  相似文献   

16.
Barends S  Bink HH  van den Worm SH  Pleij CW  Kraal B 《Cell》2003,112(1):123-129
Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.  相似文献   

17.
Complete or partial cDNA sequences of the RNA bacteriophage Qbeta were cloned in plasmids under the control of the lambdaP(L) promoter to allow regulated expression in Escherichia coli harbouring the gene for the temperature-sensitive lambdaCI857 repressor. Induction of the complete Qbeta sequence leads to a 100-fold increase in phage production, accompanied by cell lysis. Induction of the 5'-terminal sequence containing the intact maturation protein (A2) cistron also causes cell lysis. Alterations of the A2 cistron, leading to proteins either devoid of approximately 20% of the C-terminal region or of six internal amino acids, abolish the lysis function. Expression of other cistrons in addition to the A2 cistron does not enhance host lysis. Thus, in Qbeta, the A2 protein, in addition to its functions as maturation protein, appears to trigger cell lysis. This contrasts with the situation in the distantly related group I RNA phages such as f2 and MS2 where a small lysis polypeptide is coded for by a region overlapping the end of the coat gene and the beginning of the replicase gene.  相似文献   

18.
The coat protein of bacteriophage MS2 is a translational repressor. It inhibits the synthesis of the viral replicase by binding a specific RNA structure that contains the replicase translation initiation region. In order to begin a genetic dissection of the repressor activity of coat protein, a two-plasmid system has been constructed that expresses coat protein and a replicase-beta-galactosidase fusion protein from different, compatible plasmids containing different antibiotic-resistant determinants. The coat protein expressed from the first plasmid (pCT1) represses synthesis of a replicase-beta-galactosidase fusion protein encoded on the other plasmid (pRZ5). Mutations in the translational operator or in coat protein result in constitutive synthesis of the enzyme. This permits the straightforward isolation of mutations in the coat sequence that affect repressor function. Because of the potential importance of cysteine residues for RNA binding, mutations were constructed that substitute serines for the cysteine residues normally present at positions 46 and 101. Both of these mutations result in translational repressor defects. Chromatographic and electron microscopic analyses indicate that the plasmid-encoded wild-type coat protein forms capsids in vivo. The ability of the mutants to adopt and/or maintain the appropriate conformation was assayed by comparing them to the wild-type protein for their ability to form capsids. Both mutants exhibited evidence of improper folding and/or instability as indicated by their aberrant elution behavior on a column of Sepharose CL-4B. Methods were developed for the rapid purification of plasmid-encoded coat protein, facilitating future biochemical analyses of mutant coat proteins.  相似文献   

19.
20.
The secondary structure of genomic RNA from the coliphage Q beta has been examined by electron microscopy in the presence of varying concentrations of spermidine using the Kleinschmidt spreading technique. The size and position of structural features that cover 70% of the viral genome have been mapped. The structural features that are visualized by electron microscopy in Q beta RNA are large. They range in size from 170 to 1600 nucleotides. A loop containing approximately 450 nucleotides is located at the 5' end of the RNA. It includes the initiation region for the viral maturation protein. A large hairpin containing approximately 1600 nucleotides is located in the center of the molecule. It is multibranched and includes most of the viral coat gene, the readthrough region of the A1 gene, and approximately one third of the viral replicase gene. Within the central hairpin, the initiation region for the viral replicase gene pairs with a region within the distal third of the viral coat gene. This structure may participate in the regulation of translational initiation of the viral replicase gene. Two structural variants of the central hairpin were observed. One of them brings the internal S and M viral replicase binding regions into juxtaposition. These observations suggest that the central hairpin may also participate in the regulation of translation of the viral coat gene. The secondary structures that are observed in Q beta RNA differ significantly from structures that we described previously in the genomic RNA of coliphage MS2 but are similar to structures we observed by electron microscopy in the related group B coliphage SP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号