首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The 5' end of porcine mitochondrial aconitase mRNA contains an iron responsive element (IRE)-like secondary structure (T. Dandekar, R. Stripecke, N. K. Gray, B. Goosen, A. Constable, H. E. Johansson, and M. W. Hentze (1991) EMBO J. 10, 1903-1909). A protein from a liver extract binds to a mitochondrial aconitase RNA probe and supports the identification of this sequence as an IRE. Purified cytosolic aconitase but not the mitochondrial enzyme binds to this IRE as well as to a ferritin IRE. All forms of cytosolic aconitase, [4Fe-4S] enzyme, [3Fe-4S] enzyme and apoenzyme bind with similar affinity. A Kd of 0.25 nM was calculated for the apoaconitase-IRE interaction from Scatchard analysis. These results support the conclusion that cytosolic aconitase is an IRE-binding protein which may regulate translation of mitochondrial aconitase mRNA.  相似文献   

4.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

5.
The reactivity of cysteines following cluster destruction by iron chelation was investigated for [4Fe-4S]2+ and cubane [3Fe-4S]+ beef heart aconitase. When the chelator orthobathophenanthroline disulfonate was used, the formation of sulfur-sulfur bonds and the retention of inorganic sulfur from the cluster was observed. For both the 4Fe and 3Fe forms of aconitase, the two cysteines in peptide 7, the cysteine in peptide 3, and the cysteine in peptide 2 were found as the primary constituents of sulfur-sulfur bonds (the peptide sequences and nomenclature are from Plank, D. W., and Howard, J. B. (1988) J. Biol. Chem. 263, 8184-8189). Three of these four cysteines (peptides 3 and 7) correlated with those proposed to be cluster ligands recently determined by x-ray crystallography (Robbins, A. H. and Stout, C. D. (1989) Proteins, in press; Robbins, A. H., and Stout, C. D.,, (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3639-3643) for pig heart aconitase. A mechanism is proposed whereby the greater affinity of orthobathophenanthroline disulfonate for Fe2+ relative to Fe3+ shifts the equilibrium toward reduction of ferric iron through sulfur-sulfur bond formation at the cluster site. Aconitase which has been oxidized with ferricyanide and from which the cluster iron has been removed by EDTA has been shown to have two di- or polysulfides (Kennedy, M. C., and Beinert, H. (1988) J. Biol. Chem. 263, 8194-8198). The cysteines found in the sulfur-sulfur bonds generated by this treatment also were predominantly those from peptides 3 and 7. In addition, the putative thiol ligands for the linear [3Fe-4S]+ cluster of aconitase are reported. The four cysteines of peptides 7 and 9 (two in each peptide) were found to be protected by the cluster from alkylation when the protein was denatured. The difference in the ligands between the cubane and linear forms indicates that a specific thiol exchange occurs during the conversion.  相似文献   

6.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-induced oxidative stress on IRP-1. Treatment of murine B6 fibroblasts with menadione sodium bisulfite (MSB), a redox cycling drug, causes a modest activation of IRP-1 to bind to IREs within 15-30 min. However, IRE binding drops to basal levels within 60 min. Surprisingly, a remarkable loss of both IRE binding and aconitase activities of IRP-1 follows treatment with MSB for 1-2 h. These effects do not result from alterations in IRP-1 half-life, can be antagonized by the antioxidant N-acetylcysteine, and regulate IRE-containing mRNAs; the capacity of iron-starved MSB-treated cells to increase transferrin receptor mRNA levels is inhibited, and MSB increases the translation of a human growth hormone indicator mRNA bearing an IRE in its 5'-untranslated region. Nonetheless, MSB inhibits ferritin synthesis. Thus, menadione-induced oxidative stress leads to post-translational inactivation of both genetic and enzymatic functions of IRP-1 by a mechanism that lies beyond the "classical" Fe-S cluster switch and exerts multiple effects on cellular iron metabolism.  相似文献   

7.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   

8.
9.
The cellular pro-oxidative stress induced by high zinc concentrations or cadmium is most likely mediated by disruption of redox (mainly thiol) homeostasis or by mishandling of redox-active transition metals. The impact of zinc and cadmium on the main regulators of iron homeostasis in metazoans, the iron regulatory proteins (IRP) 1 and 2, has been probed with the human recombinant proteins. Using purified proteins or extracts of yeast producing human IRP, zinc and cadmium were shown to interfere with the IRE-binding activity of IRP1, but not with that of IRP2 or the aconitase activity of IRP1. The IRP1 active site cysteines in positions 437, 503 and 506 were not directly involved in the effects of zinc and cadmium. The loss of RNA-binding activity is due to the reversible and specific aggregation of the IRP1 apoprotein with zinc and cadmium, since precipitation did not occur with other divalent metals such as manganese, cobalt or magnesium. The reported data suggest a new mechanism for the biological toxicity of cadmium and high zinc concentrations by interference with iron metabolism.  相似文献   

10.
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.  相似文献   

11.
12.
13.
Beef heart aconitase, as isolated under aerobic conditions, is inactive and contains a [3Fe-4S]1+ cluster. On incubation at pH greater than 9.5 (or treatment with 4-8 M urea) the color of the protein changes from brown to purple. This purple form is stable and can be converted back in good yield to the active [4Fe-4S]2+ form by reduction in the presence of iron. Active aconitase is converted to the purple form at alkaline pH only after oxidative inactivation. The Fe/S2- ratio of purple aconitase is 0.8, indicating the presence of [3Fe-4S] clusters. The number of SH groups readily reacting with 5,5'-dithiobis(2-nitrobenzoic acid) is increased from approximately 1 in the enzyme as isolated to 7-8 in the purple form, indicating a partial unfolding of the protein. On conversion of inactive aconitase to the purple form, the EPR signal at g = 2.01 (S = 1/2) is replaced by signals at g = 4.3 and 9.6 (S = 5/2). M?ssbauer spectroscopy shows that purple aconitase has high-spin ferric ions, each residing in a tetrahedral environment of sulfur atoms. The three iron sites are exchange-coupled to yield a ground state with S = 5/2. Analysis of the data within a spin coupling model shows that J13 congruent to J23 and 2 J12 less than J13, where the Jik describe the antiferromagnetic (J greater than 0) exchange interactions among the three iron pairs. Comparison of our data with those reported for synthetic Fe-S clusters (Hagen, K. S., Watson, A. D., and Holm, R. H., (1983) J. Am. Chem. Soc. 105, 3905-3913) shows that purple aconitase contains a linear [3Fe-4S]1+ cluster, a structural isomer of the S = 1/2 cluster of inactive aconitase. Our studies also show that protein-bound [2Fe-2S] clusters can be generated under conditions where partial unfolding of the protein occurs.  相似文献   

14.
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.  相似文献   

15.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

16.
17.
18.
MitoNEET was identified as an outer mitochondrial membrane protein that can potentially bind the anti-diabetes drug pioglitazone. The crystal structure of the cytoplasmic mitoNEET (residues 33-108) is determined in this study. The structure presents a novel protein fold and contains a [2Fe-2S] cluster-binding domain. The [2Fe-2S] cluster is coordinated to the protein by Cys-72, Cys-74, Cys-83, and His-87 residues. This coordination is also novel compared with the traditional [2Fe-2S] cluster coordinated by four cysteines or two cysteines and two histidines. The cytoplasmic mitoNEET forms homodimers in solution and in crystal. The dimerization is mainly mediated by hydrophobic interactions as well as hydrogen bonds coordinated by two water molecules binding at the interface. His-87 residue, which plays an important role in the coordination of the [2Fe-2S] cluster, is exposed to the solvent on the dimer surface. It is proposed that mitoNEET dimer may interact with other proteins via the surface residues in close proximity to the [2Fe-2S] cluster.  相似文献   

19.
Han D  Canali R  Garcia J  Aguilera R  Gallaher TK  Cadenas E 《Biochemistry》2005,44(36):11986-11996
Aconitases are iron-sulfur cluster-containing proteins present both in mitochondria and cytosol of cells; the cubane iron-sulfur (Fe-S) cluster in the active site is essential for catalytic activity, but it also renders aconitase highly vulnerable to reactive oxygen and nitrogen species. This study examined the sites and mechanisms of aconitase inactivation by peroxynitrite (ONOO-), a strong oxidant and nitrating agent readily formed from superoxide anion and nitric oxide generated by mitochondria. ONOO- inactivated aconitase in a dose-dependent manner (half-maximal inhibition was observed with approximately 3 microM ONOO-). Low levels of ONOO- caused the conversion of the Fe-S cluster from the [4Fe-4S]2+ form to the inactive [3Fe-4S]1+ form with the loss of labile iron, as confirmed by low-temperature EPR analysis. In the presence of the substrate, citrate, 66-fold higher concentrations of ONOO- were required for half-maximal inhibition. The protective effects of citrate corresponded to its binding to the active site. The inactivation of aconitase in the presence of citrate was due to ONOO--mediated cysteine thiol loss and tyrosine nitration in the enzyme as shown by Western blot analyses. LC/MS/MS analyses revealed that ONOO- treatment to aconitase resulted in nitration of tyrosines 151 and 472 and oxidation to sulfonic acid of cysteines 126 and 385. The latter is one of the three cysteine residues in aconitase that binds to the Fe-S cluster. All other modified tyrosine and cysteine residues were adjacent to the binding site, thus suggesting that these modifications caused conformational changes leading to active-site disruption. Aconitase cysteine thiol modifications other than oxidation to sulfonic acid, such as S-glutathionylation, also decreased aconitase activity, thus indicating that glutathionylation may be an important means of modulating aconitase activity under oxidative and nitrative stress. Taken together, these results demonstrate that the Fe-S cluster in the active site, cysteine 385 bound to the Fe-S cluster, and tyrosine and cysteine residues in the vicinity of the active site are important targets of oxidative and/or nitrative attack, which is selectively controlled by the mitochondrial matrix citrate levels. The mechanisms inherent in aconitase inactivation by ONOO- are discussed in terms of the mitochondrial matrix metabolic and thiol redox state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号