首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have begun to purify and characterize several proteins which bind to the mouse immunoglobulin heavy-chain enhancer to understand the molecular interactions important for enhancer activity. Three proteins which bind to different sites on the immunoglobulin heavy-chain enhancer have been chromatographically separated and partially purified. One protein binds a site which has not been reported previously and does not bind to other reported protein-binding sites on the immunoglobulin heavy-chain enhancer. Binding-site boundaries for the three partially purified proteins have been precisely mapped by methylation interference, DNase I footprinting, and orthophenanthroline/copper chemical nuclease footprinting. We have also characterized these three proteins with respect to dissociation rate constants.  相似文献   

2.
Systemic release of endotoxin (LPS) after Gram-negative infection initiates a cascade of host cytokines that are thought to be the direct cause of shock, multisystem organ failure, and death. Endogenous LPS-binding proteins may play a role in regulating LPS toxicity in vivo. The human neutrophil granule protein bactericidal/permeability-increasing protein (BPI) shares sequence homology and immunocrossreactivity with an acute phase lipopolysaccharide binding protein (LBP) which has been shown to bind to LPS and accelerate LPS activation of neutrophils and macrophages. Although structurally similar, LBP and BPI are apparently functionally antagonistic. We previously showed that BPI inhibits LPS-mediated neutrophil activation in vitro. Here we demonstrate that BPI binds to LPS near the lipid A domain, and formation of the LPS-BPI complex abrogates detrimental host responses to LPS. For example, BPI blocks LPS-stimulated TNF release in vitro and in vivo, and LPS complexed to BPI is not pyrogenic in rabbits. Results demonstrating that BPI is released by stimulated human neutrophils further support the idea that BPI functions extracellularly in vivo to neutralize endotoxin. Taken together, these data argue that BPI neutralizes the toxic effects of LPS in vivo, and that BPI may represent a new therapeutic approach to the treatment of endotoxic shock.  相似文献   

3.
The profilin family consists of a group of ubiquitous highly conserved 12-15 kDa eukaryotic proteins that bind actin, phosphoinositides, poly-l-proline (PLP) and proteins with proline-rich motifs. Some proteins with proline-rich motifs form complexes that have been implicated in the dynamics of the actin cytoskeleton and processes such as vesicular trafficking. A major unanswered question in the field is how profilin achieves the required specificity to bind such an array of proteins. It is now becoming clear that profilin isoforms are subject to differential regulation and that they may play distinct roles within the cell. Considerable evidence suggests that these isoforms have different functional roles in the sorting of diverse proteins with proline-rich motifs. All profilins contain highly conserved aromatic residues involved in PLP binding which are presumably implicated in the interaction with proline-rich motif proteins. We have previously shown that profilin is phosphorylated on tyrosine residues. Here, we show that profilin can bind directly to Phaseolus vulgaris phosphoinositide 3-kinase (PI3K) type III. We demonstrate that a new region around Y72 of profilin, as well as the N- and C-terminal PLP-binding domain, recognizes and binds PLP and PI3K. In vitro binding assays indicate that PI3K type III forms a complex with profilin in a manner that depends on the tyrosine phosphorylation status within the proline-rich-binding domain in profilin. Profilin-PI3K type III interaction suggests that profilin may be involved in membrane trafficking and in linking the endocytic pathway with actin reorganization dynamics.  相似文献   

4.
The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.  相似文献   

5.
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only “early” by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.  相似文献   

6.
The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.  相似文献   

7.
8.
Li X  Gianoulis TA  Yip KY  Gerstein M  Snyder M 《Cell》2010,143(4):639-650
Natural small compounds comprise most cellular molecules and bind proteins as substrates, products, cofactors, and ligands. However, a large-scale investigation of in?vivo protein-small metabolite interactions has not been performed. We developed a mass spectrometry assay for the large-scale identification of in?vivo protein-hydrophobic small metabolite interactions in yeast and analyzed compounds that bind ergosterol biosynthetic proteins and protein kinases. Many of these proteins bind small metabolites; a few interactions were previously known, but the vast majority are new. Importantly, many key regulatory proteins such as protein kinases bind metabolites. Ergosterol was found to bind many proteins and may function as a general regulator. It is required for the activity of Ypk1, a mammalian AKT/SGK kinase homolog. Our study defines potential key regulatory steps in lipid biosynthetic pathways and suggests that small metabolites may play a more general role as regulators of protein activity and function than previously appreciated.  相似文献   

9.
We have developed a unilamellar phospholipid vesicle system which contains the N-formyl peptide receptor and GTP binding proteins. Several detergents were investigated but only two, octyl glucoside (35 mM) and deoxycholate (7.5 mM), were capable of extracting N-formyl peptide receptor from neutrophil membranes in a form which remained functionally active upon reconstitution into phospholipid vesicles. Extracted proteins were reconstituted into phosphatidylcholine vesicles by passage over a Sephadex G-50-80 column. The reconstituted formylpeptide receptor could bind [3H]FMLP (3H-labeled fMet-Leu-Phe) and [125I]FMLPL-SASD (125I-labeled N-formylmethionylleucylphenylalanyl-N epsilon-(2-(p-azidosalicylamido)ethyl- 1,3'-dithiopropionyl)lysine) while the endogenous G protein could bind [35S]GTP gamma S. Furthermore, the functional interaction of the two proteins was preserved. Addition of the nonhydrolyzable guanine nucleotide, GTP gamma S, shifted the N-formyl peptide receptor from a high- to a low-affinity binding state for ligand. The development of this in vitro reconstitution system should provide a basis to study the mechanism of interaction of the N-formyl peptide receptor and the G protein.  相似文献   

10.
Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry was employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu4+-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore™ analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.  相似文献   

11.
Bullous pemphigoid (BP) is a subepidermal blistering disease associated with autoantibodies against two hemidesmosomal proteins, BP180 and BP230. Numerous inflammatory cells infiltrate the upper dermis in BP. We have previously shown by passive transfer studies that Abs to the ectodomain of murine BP180 are capable of triggering blisters in mice that closely mimic human BP. Experimental BP depends on complement activation and neutrophil infiltration. In the present study, we investigated the relative contribution of neutrophils, mast cells (MCs), macrophages (Mphi), and lymphocytes and their functional relationship in the immunopathogenesis of this disease model by using mice deficient in these cells. Wild-type, T cell-deficient, and T and B cell-deficient mice injected intradermally with pathogenic anti-murine BP180 IgG exhibited extensive subepidermal blisters. In contrast, mice deficient in neutrophils, MCs, and Mphi were resistant to experimental BP. MCs play a major role in neutrophil recruitment into the dermis. Furthermore, Mphi-mediated neutrophil infiltration depends on MC activation/degranulation.  相似文献   

12.
13.
14.
Interaction of DNA with nuclear scaffolds in vitro   总被引:25,自引:0,他引:25  
We have previously identified a number of specific DNA fragments called SARs (scaffold-associated regions) that are associated with the nuclear scaffold and define the basis of DNA loops. We demonstrate that cloned DNA fragments containing SAR sequences bind to nuclear scaffolds in vitro with the same specificity as have genomic SAR fragments. This specific interaction is observed with the biochemically complex type I scaffolds. These scaffolds are composed of the nuclear lamina proteins and a set of other proteins that forms the internal network of these structures. So-called type II scaffolds, which are composed primarily of the lamina proteins and lack the proteins of the internal network, do not bind the SAR fragments at a detectable level. Competition experiments show that different SARs share common structural elements and can bind to the same sites on the nuclear scaffold, although with different affinities. Moreover, the SAR binding sites appear to be evolutionarily conserved, as all the Drosophila SARs also bind with identical specificity to nuclear scaffolds derived from rat liver nuclei. These Sar interaction studies were carried out with lithium 3,5-diiodosalicylate-extracted nuclei. Interestingly, scaffolds prepared by high-salt extraction also bind the genomic and exogenously added SAR fragments specifically. However, the endogenous transcribed sequences, as opposed to the same fragments added as purified DNA, associate randomly with these scaffolds.  相似文献   

15.
PDZ domains are a recently characterized protein-recognition module. In most cases, PDZ domains bind to the C-terminal end of target proteins and are thought thereby to link these target proteins into functional signaling networks. We report the isolation of artificial PDZ domains selected via a mutagenesis screen in vivo, each recognizing a different C-terminal peptide. We demonstrate that the PDZ domains isolated can bind selectively to their target peptides in vitro and in vivo. Two of the target peptides chosen are the C-terminal ends of two cellular transmembrane proteins with which no known PDZ domains have been reported to interact. By targeting these artificial PDZ domains to the nucleus, interacting target peptides were efficiently transported to the same subcellular localization. One of the isolated PDZ domains was tested and shown to be efficiently directed to the plasma membrane when cotransfected with the full-length transmembrane protein in mammalian cells. Thus, artificial PDZ domains can be engineered and used to target intracellular proteins to different subcellular compartments.  相似文献   

16.
In most sexually reproducing organisms, meiotic recombination is initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. In budding yeast, nine other proteins are also required for DSB formation, but the roles of these proteins and the interactions among them are poorly understood. We report further studies of the behaviors of these proteins. Consistent with other studies, we find that Mei4 and Rec114 bind to chromosomes from leptonema through early pachynema. Both proteins showed only limited colocalization with the meiotic cohesin subunit Rec8, suggesting that Mei4 and Rec114 associated preferentially with chromatin loops. Rec114 localization was independent of other DSB factors, but Mei4 localization was strongly dependent on Rec114 and Mer2. Systematic deletion analysis identified protein regions important for a previously described two-hybrid interaction between Mei4 and Rec114. We also report functional characterization of a previously misannotated 5′ coding exon of REC102. Sequences encoded in this exon are essential for DSB formation and for Rec102 interaction with Rec104, Spo11, Rec114, and Mei4. Finally, we also examined genetic requirements for a set of previously described two-hybrid interactions that can be detected only when the reporter strain is induced to enter meiosis. This analysis reveals new functional dependencies for interactions among the DSB proteins. Taken together, these studies support the view that Mei4, Rec114, and Mer2 make up a functional subgroup that is distinct from other subgroups of the DSB proteins: Spo11–Ski8, Rec102–Rec104, and Mre11–Rad50–Xrs2. These studies also suggest that an essential function of Rec102 and Rec104 is to connect Mei4 and Rec114 to Spo11. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Blood-brain barrier (BBB) disruption is a common feature of numerous neurologic disorders. A fundamental question in these diseases is the extent inflammatory immune cells contribute to CNS vascular permeability. We have previously shown that CD8 T cells play a critical role in initiating BBB disruption in the peptide-induced fatal syndrome model developed by our laboratory. However, myelomonocytic cells such as neutrophils have also been implicated in promoting CNS vascular permeability and functional deficit in murine models of neuroinflammatory disease. For this reason, we evaluated neutrophil depletion in a murine model of CD8 T cell-initiated BBB disruption by employing traditionally used anti-granulocyte receptor-1 mAb RB6-8C5 and Ly-6G-specific mAb 1A8. We report that CNS-infiltrating antiviral CD8 T cells express high levels of granulocyte receptor-1 protein and are depleted by treatment with RB6-8C5. Mice treated with RB6-8C5, but not 1A8, display: 1) intact BBB tight junction proteins; 2) reduced CNS vascular permeability visible by gadolinium-enhanced T1-weighted magnetic resonance imaging; and 3) preservation of motor function. These studies demonstrate that traditional methods of neutrophil depletion with RB6-8C5 are broadly immune ablating. Our data also provide evidence that CD8 T cells initiate disruption of BBB tight junction proteins and CNS vascular permeability in the absence of neutrophil support.  相似文献   

18.
Calmodulin is an essential Ca2+-binding protein that binds to a variety of targets that carry out critical signaling functions. We describe the proteomic characterization of mouse brain Ca2+-calmodulin-binding proteins that were purified using calmodulin affinity chromatography. Proteins in the eluates from four different affinity chromatography experiments were identified by 1-DE and in-gel digestion followed by LC-MS/MS. Parallel experiments were performed using two related control-proteins belonging to the EF-hand family. After comparing the results from the different experiments, we were able to exclude a significant number of proteins suspected to bind in a nonspecific manner. A total of 140 putative Ca2+-calmodulin-binding proteins were identified of which 87 proteins contained calmodulin-binding motifs. Among the 87 proteins that contained calmodulin-binding motifs, 48 proteins have not previously been shown to interact with calmodulin and 39 proteins were known calmodulin-binding proteins. Many proteins with ill-defined functions were identified as well as a number of proteins that at the time of the analysis were described only as ORFs. This study provides a functional framework for studies on these previously uncharacterized proteins.  相似文献   

19.
Poliovirus proteins 3A and 3AB are small, membrane-binding proteins that play multiple roles in viral RNA replication complex formation and function. In the infected cell, these proteins associate with other viral and cellular proteins as part of a supramolecular complex whose structure and composition are unknown. We isolated viable viruses with three different epitope tags (FLAG, hemagglutinin [HA], and c-myc) inserted into the N-terminal region of protein 3A. These viruses exhibited growth properties and characteristics very similar to those of the wild-type, untagged virus. Extracts prepared from the infected cells were subjected to immunoaffinity purification of the tagged proteins by adsorption to commercial antibody-linked beads and examined after elution for cellular and other viral proteins that remained bound to 3A sequences during purification. Viral proteins 2C, 2BC, 3D, and 3CD were detected in all three immunopurified 3A samples. Among the cellular proteins previously reported to interact with 3A either directly or indirectly, neither LIS1 nor phosphoinositol-4 kinase (PI4K) were detected in any of the purified tagged 3A samples. However, the guanine nucleotide exchange factor GBF1, which is a key regulator of membrane trafficking in the cellular protein secretory pathway and which has been shown previously to bind enteroviral protein 3A and to be required for viral RNA replication, was readily recovered along with immunoaffinity-purified 3A-FLAG. Surprisingly, we failed to cocapture GBF1 with 3A-HA or 3A-myc proteins. A model for variable binding of these 3A mutant proteins to GBF1 based on amino acid sequence motifs and the resulting practical and functional consequences thereof are discussed.  相似文献   

20.
Structural classification of zinc fingers: survey and summary   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号