共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear magnetic resonance was used to study dimyristoylphosphatidylcholine vesicles. Loss of vesicle contents and transformation to more extended bilayer structures near the gel to liquid crystalline phase transition is related to potential cell membrane damage on lowering environmental temperatures. 相似文献
2.
A study was carried out to electric parameters of single ionic channels initiated at phase transition of bromidmetilate 1,2-distearoyl-rac-glycero-3-(O-beta-dimethylaminoethyl)-methylphosphonate, whose molecules under conditions given below are possibly charged. It has been shown that changes of transmembrane current appear at phase transition temperature. Comparison between ionic selectivity of channels initiated at Tph.t in the membranes of DSL and its phosphate analog suggests that the channel walls initiated at phospholipid phase transitions are covered with polar groups of molecules. 相似文献
3.
5 structural transitions were found in bilayer lipid membranes (BLM) from egg lecithin (EL) within the temperature range 14-44 degrees C. In the transition zone BLM conductivity abruptly increases, in some cases current fluctuations of the order 150 pC of the channel type are initiated. The transition temperatures observed in BLM from EL coincide with those in biological membranes. The cause of this phenomenon is discussed, as well as possible use of these BLM in the region of structural transition as a model of cellular receptor to electromagnetic fields. 相似文献
4.
We presented a mechanical model of a lipid bilayer membrane. The internal conformations of a polar head group and double hydrocarbon chains in a lipid molecule were described on the basis of the isomeric bond-rotation scheme. The thermodynamic properties of the lipid membranes were represented by a density matrix that described the rotational isomeric states of the head groups and chains. The parameters that determined the density matrix were obtained in the presence of the intermolecular interactions, which depend on the conformation of the molecules. The interchain interaction was given by the Kihara potential, which depends on the shape of the chains. The Coulomb interaction between the polar head groups and the lateral pressure were considered. The calculation was made for the three lipid molecules corresponding to DMPC, DPPC, and DSPC. The model agreed well with the following experimental results: the temperature, the latent heat of the gel-to-liquid crystalline phase transition, the temperature dependencies of (a) the intermolecular distance, (b) the number of gauche bonds in a hydrocarbon chain, (c) the order parameter for the bond orientation, (d) the volume of the membrane, (e) the thermal expansion coefficients, and (f) the birefringence. 相似文献
5.
H L Scott 《Journal of theoretical biology》1974,46(1):241-253
We wish to present an order-disorder model for the observed phase transitions in lipid bilayers and biological membranes. We show that the model may, under certain circumstances, exhibit two phase transitions, one corresponding to positional disordering of entire lipid molecules, and the other corresponding to orientational disordering in the hydrocarbon chains. We then give results of our numerical analysis of the model and compare them with experimental data. Shortcomings of the model and future directions for analyses of this type are also discussed. 相似文献
6.
Changes in the ionic permeability of bilayer lipid membranes from dipalmitoyl phosphatidylcholine at temperatures of phase transition in LiCl (1 M) solution after the addition of polyethyleneglycols of different molecular masses have been studied. The transition of ionic membrane channels from the conducting state to a blocking nonconducting state using polymers makes it possible to calibrate lipid pores. It was shown that low-molecular-weight glycerol, polyethyleneglycols with molecular masses of 300 and 600 decrease the amplitude of fluctuations of the current through the membrane, the decrease being proportional to the size of the polymer molecule being incorporated. The addition of polyethyleneglycols with molecular masses of 1450, 2000, and 3350 decrease the current fluctuations to the basal noise level. This result is considered as a complete blockade of ion channel conductivity. In the presence of rather large polymers, such as polyethyleneglycols with molecular masses of 6000 and 20000, which are practically not incorporated into the pore, single current fluctuations occur again; however, their amplitudes are somewhat smaller than in the absence of polyethyleneglycol. It is assumed that the complete blockade of the conductivity of lipid ionic channels by polyethyleneglycols with molecular masses of 1450, 2000, and 3350 is due to the dehydration of the pore gap and the conversion of the hydrophilic pore to a hydrophobic pore. 相似文献
7.
8.
Charge-pulse experiments were performed on artificial lipid bilayer membranes with charging times in the range between 10 ns and 10 μs. If the membranes are charged to voltages in the order of 100 mV, the membrane voltage at the end of the charge pulse is a linear function of the injected charge. However, if the membranes are charged to voltages in the range of 1 V, this relationship no longer holds and a reversible high conductance state occurs. This state is defined as an electrical breakdown and it does not allow the membranes to charge to higher voltages than the breakdown voltage, . Between charging times of 300 ns and 5 μs at 25°C and between 100 ns and 2 μs at 40°C, showed a strong dependence on the charging time of the membrane and decreased from 1.2 to 0.5 V (25°C) and from 1 to 0.4 V (40°C). For other charging times below and above these ranges, the breakdown voltage seemed to be constant. The results indicate that the breakdown phenomenon occurs in less than 10 ns.The pulse-length dependence of the breakdown voltage is consistent with the interpretation of the electrical breakdown mechanism in terms of the electromechanical model. However, it seems possible that below a charging time of the membrane of 300 ns (25°C) and 100 ns (40°C) other processes (such as the Born energy) become possible. 相似文献
9.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field. 相似文献
10.
The pressure dependence of the lipid bilayer phase transition 总被引:2,自引:0,他引:2
11.
Fluorinated fatty acids of the general formula CH3(CH2)13-mCF2(CH2)m-2COOH are informative spectroscopic probes of the gel to liquid-crystalline phase transitions in phospholipid dispersions and in biological membranes. We present theoretical considerations to suggest that the 19F nuclear magnetic resonance line shapes are very different for frozen and fluid lipid regions. Our studies confirm this expectation for mixed phospholipid multilamellar dispersions containing a trace of difluoromyristate. The method correctly measures the onset and completion temperatures of the transition in the well-studied dimyristoylphosphaditylcholine distearoylphosphatidylcholine system and also describes the motional behavior of the solid and fluid phases within the transition. Lipids extracted from Escherichia coli membranes show similar motional phenomena through the transition-temperature range according to 19F nuclear magnetic resonance studies of difluoromyristate biosynthetically incorporated into the K1060B5 strain, an unsaturated fatty acid auxotroph. Intact cells or membrane vesicles show substantially different behavior from extracted lipids, indicating that membrane proteins significantly perturb the phase transition. Evidence presented in this paper also shows that the 19F resonance from Escherichia coli phospholipids is sensitive to various intramembrane interactions. There is a general decrease in restriction of motion due to neutral lipids and an opposite effect due to the architecture of the native membrane. Neither effect is temperature sensitive. However, there are interactions in the intact membrane, affecting the 19F resonance, that are temperature dependent both due to the phase-transition process and due to processes occurring at high temperatures. 相似文献
12.
Summary We present a quantitative theory that relates the fluorescence intensityvs. temperature (I vs. T) profile of a fluorescent-labeled two-component lipid bilayer to the phase diagram of the bilayer and the partition coefficientK of the fluorophore between fluid and solid phases of the bilayer. We show how the theory can be used to evaluateK from experimentalI vs. T profiles and the appropriate phase diagrams as well as to understand the different shapes ofI vs. T profiles obtained with particular fluorophores and phase diagrams. Using calculatedI vs. T graphs, we discuss the meaning of parameters, such as midpoint of the phase transition and onset and termination of a transition, which are often used to characterize phase transitions on the basis of fluorescence intensityvs. temperature profiles. 相似文献
13.
A model for self-sustained potential oscillation of lipid bilayer membranes induced by the gel-liquid crystal phase transitions. 下载免费PDF全文
To clarify the mechanism of self-sustained oscillation of the electric potential between the two solutions divided by a lipid bilayer membrane, a microscopic model of the membrane system is presented. It is assumed, on the basis of the observed results (Yoshikawa, K., T. Omachi, T. Ishii, Y. Kuroda, and K. liyama. 1985. Biochem. Biophys. Res. Commun. 133:740-744; Ishii, T., Y. Kuroda, T. Omochi, and K. Yoshikawa. 1986. Langmuir. 2:319-321; Toko, K., N. Nagashima, S. liyama, K. Yamafuji, and T. Kunitake. Chem. Lett. 1986:1375-1378), that the gel-liquid crystal phase transition of the membrane drives the potential oscillation. It is studied, by using the model, how and under what condition the repetitive phase transition may occur and induce the potential oscillation. The transitions are driven by the repetitive adsorption and desorption of proton by the membrane surface, actions that are induced the periodic reversal of the direction of protonic current. The essential conditions for the periodic reversal are (a) at least one kind of cations such as Na+ or K+ are included in the system except for proton, and the variation of their permeability across the membrane due to the phase transition is noticeably larger than that of proton permeability; and (b) the phase transition has a hysteresis. When these conditions are fulfilled, the self-sustained potential oscillation may be brought about by adjusting temperature, pH, and the cation concentration in the solutions on both sides of the membrane. Application of electric current across the membrane also induces or modifies the potential oscillation. Periodic, quasiperiodic, and chaotic oscillations appear especially, depending on the value of frequency of the applied alternating current. 相似文献
14.
Three different bilayer lipid membrane systems were studied under visible and ultraviolet illumination. The first system consisted of a bilayer lipid membrane formed with a mixture of phospholipids and cholesterol, to one side of which purple membrane fragments from Halobacterium halobium were added. The second system consisted of a membrane formed from spinach chloroplast extract. When either of these membrane systems was illuminated with ultraviolet and visible radiation, photopotentials were observed and photoelectric action spectra were recorded (the technique is termed photoelectrospectrometry). Each spectrum had a definite structure which was characteristic of each of the modified membranes. The third system studied consisted of an otherwise photoinactive membrane formed with a mixture of phospholipids and cholesterol, to one side of which chymotrypsin was added. When the membrane was illuminated with visible light no photoresponse was observed. On the other hand, a photopotential which increased with incubation time was observed when the membrane was illuminated with ultraviolet light. Since, in our systems, the photoresponses have been observed to be due to certain species incorporated into the membrane, it appears that photoelectrospectrometry is a useful tool for studying lipid-protein interactions, constituent organization and energy transfer in membranes. 相似文献
15.
J. F. Nagle 《The Journal of membrane biology》1976,27(1):233-250
Summary Headgroup and soft core interactions are added to a lipid monolayer-bilayer model and the surface pressure-area phase diagrams are calculated. The results show that quite small headgroup interactions can have biologically significant effects on the transition temperature and the phase diagram. In particular, the difference in transition temperatures of lecithins and phosphatidyl ethanolamines is easy to reproduce in the model. The phosphatidic acid systems seem to require weak transient hydrogen bonding which is also conjectured to play a role in most of the lipid systems. By a simple surface free energy argument it is shown that monolayers under a surface pressure of 50 dynes/cm should behave as bilayers, in agreement with experiment. Although the headgroup interactions are biologically very significant, in fundamental studies of the main phase transition in lipids they are secondary in importance to the hydrocarbon chain interactions (including the excluded volume interaction, the rotational isomerism, and the attractive van der Waals interaction). 相似文献
16.
Photon correlation spectroscopy has been applied to study phase transitions of planar bilayer membranes. The membrane tension and one specific membrane viscosity are probed. Difficulties arising in the measurement of the temperature dependence of these properties are discussed and a servo-control system to overcome them is described. Typical data are presented for monoglyceride bilayers. Membranes incorporating cholesterol display effects below the lipid transition temperature which are interpreted in terms of separation within the membrane into cholesterol-rich fluid regions and regions of lipid in the gel phase. Some of the chlesterol-rich regions are apparently of macroscopic extent. 相似文献
17.
18.
L A Fishbe?n 《Biofizika》1989,34(5):785-791
In terms of the Landau thermodynamic expansion the model of lipid-protein interaction is considered for the case of relatively low protein concentrations. It is established that the proteins inserted into the lipid membrane can change its phase transition temperature. The expression determining the region size of the "boundary" lipids is obtained and the connection between the ordering extent of the "boundary" lipids and the sign and the value of the temperature shift of the phase transition is calculated. 相似文献
19.
20.
M. Montal 《The Journal of membrane biology》1972,7(1):245-266
Summary The modifications of the electrical properties of bilayer lipid membranes (BLM) composed of cholesterol and an ionic surfactant upon interaction with charged polypeptides were studied. The addition of 10–8
m polylysine (Ps+) to one side of anionic cholesterol dodecylphosphate BLM increases the specific membrane conductance over 1000-fold (from 10–8 to 10–5 mho/cm2) and develops a cationic transmembrane potential larger than 50 mV. This potential is reverted by addition of polyanions such as RNA, polyglutamic or polyadenilic acid to the same side on which Ps+ is present, by addition of Ps+ to the opposite side, or by addition of trypsin to either side. Both conductance and potential changes are hindered by increasing the ionic strength or by raising the pH of the bathing medium, disappearing above pH 11.5 where it is known that Ps+ folds into an -helix. The interaction of polyglutamic acid (PGA) with a cationic cholesterol-hexadecyltrimethylammonium bromide BLM results in increased membrane conductance and development of an anionic transmembrane potential which is reverted by addition of polycations to the same aqueous phase where PGA is present. Addition of either Ps+ or PGA to one or both sides of a neutral BLM composed of 7-dehydrocholesterol induces no significant change. The observations suggest the formation of a lipid polymer membrane resultant from the interaction, predominantly electrostatic, of the isolated components. The implications of these results are discussed in terms of the current models of membrane structure. 相似文献