首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the role of caspase 3 in apoptosis and in overall cell lethality caused by the protein kinase inhibitor staurosporine, we compared the responses of MCF-7c3 cells that express a stably transfected CASP-3 gene to parental MCF-7:WS8 cells transfected with vector alone and lacking procaspase-3 (MCF-7v). Cells were exposed to increasing doses (0.15-1 microM) of staurosporine for periods up to 19 h. Apoptosis was efficiently induced in MCF-7c3 cells, as demonstrated by cytochrome c release, processing of procaspase-3, procaspase-8, and Bid, increase in caspase-3-like DEVDase activity, cleavage of the enzyme poly(ADP-ribose) polymerase, DNA fragmentation, changes in nuclear morphology, and TUNEL assay and flow cytometry. For all of these measures except cytochrome c release, little or no activity was detected in MCF-7v cells, confirming that caspase-3 is essential for efficient induction of apoptosis by staurosporine, but not for mitochondrial steps that occur earlier in the pathway. MCF-7c3 cells were more sensitive to staurosporine than MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to killing by staurosporine when evaluated by a clonogenic assay. A similar distinction between apoptosis and loss of clonogenicity was observed for the cancer chemotherapeutic agent VP-16. These results support our previous conclusions with photodynamic therapy: (a) assessing overall reproductive death of cancer cells requires a proliferation-based assay, such as clonogenicity; and (b) the critical staurosporine-induced lethal event is independent of those mediated by caspase-3.  相似文献   

2.
The importance of the mitochondria in UV-induced apoptosis has become increasingly apparent. Following DNA damage cytochrome c and other pro-apoptotic factors are released from the mitochondria, allowing for formation of the apoptosome and subsequent cleavage and activation of caspase-9. Active caspase-9 then activates downstream caspases-3 and/or -7, which in turn cleave poly(ADP)-ribose polymerase (PARP) and other down-stream targets, resulting in apoptosis. In an effort to understand the mechanisms of Akt-mediated cell survival in breast cancer, we studied the effects of insulin-like growth factor (IGF)-I treatment on UV-treated MCF-7 human breast cancer cells. Apoptosis was induced in MCF-7 cells after UV treatment, as measured by caspase-7 and PARP cleavage, and IGF-I co-treatment protected against this response. Surprisingly caspase-9 cleavage was unchanged with UV and/or IGF-I treatment. Using MCF-7 cells overexpressing caspase-3 we have shown that resistance of caspase-9 to cleavage was not altered by the expression of caspase-3. Furthermore, overexpression of caspase-9 did not enhance PARP or caspase-7 cleavage after UV treatment. Because caspase-8 was activated with UV treatment alone, we believe that UV-induced apoptosis in MCF-7 cells occurs independently of cytochrome c and caspase-9, supporting the existence of a cytoplasmic inhibitor of cytochrome c in MCF-7 cells. We anticipate that such inhibitors may be overexpressed in cancer cells, allowing for treatment resistance.  相似文献   

3.
The analgesic buprenorphine hydrochloride (Bph) induced apoptosis-like cell death in the caspase-3-deficient human breast cancer cell line, MCF-7. This apoptosis-like cell death activated key molecules in the mitochondrial apoptotic pathway: cytochrome c, caspase-9, caspase-7, and caspase-6. Bph caused the release of fluorescent protein from the mitochondria of MCF-7 cells transfected with the pDsRed2-Mito-vector in a time-dependent manner, suggesting disruption of the mitochondrial membrane. Zn(2+) as high as 2 mM did not inhibit the DNase that took part in this apoptosis. Thus, this unidentified DNase might resemble other DNases involved in apoptosis-like cell death whose activity is not inhibited by zinc ion.  相似文献   

4.
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.  相似文献   

5.
QLT0074 is a newly introduced, porphyrin-derivative for use in photodynamic therapy (PDT). In the current study, the intracellular distribution of QLT0074 and the mode of cell death induced by photosensitization with this compound in vitro were assessed for transformed human HaCaT keratinocytes. Fluorescence microscopy studies indicated a distribution of the drug to the cytoplasm, nuclear membrane and mitochondria of these cells. In the absence of light, QLT0074 produced no evidence of apoptosis-related biochemical changes or affected cell viability. When combined with blue light exposure, cytotoxicity was exerted in a QLT0074- and light-dose-related manner. Appearance of the mitochondrial protein cytochrome c in the cytosolic fraction and expression of the apoptosis-associated mitochondrial 7A6 antigen were demonstrable following photosensitization at nano-molar levels of QLT0074. Evidence of processing of the apoptosis-effector molecules caspase-3, -6, -7, -8 and -9 as well as cleavage of the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) were demonstrable subsequent to cytochrome c release after PDT. Treatment with the anti-oxidant pyrrolidine dithiocarbamate (PDTC) inhibited cytochrome c release, caspase-3 activation and PARP cleavage associated with PDT thereby supporting the contention that QLT0074 induces apoptosis through the generation of reactive oxygen species upon light activation. QLT0074 is a potent photosensitizer with the capacity to directly initiate apoptosis by acting upon mitochondria.  相似文献   

6.
Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c.   总被引:41,自引:0,他引:41  
Caspases are cysteine proteases that mediate apoptosis by proteolysis of specific substrates. Although many caspase substrates have been identified, for most substrates the physiologic caspase(s) required for cleavage is unknown. The Bcl-2 protein, which inhibits apoptosis, is cleaved at Asp-34 by caspases during apoptosis and by recombinant caspase-3 in vitro. In the present study, we show that endogenous caspase-3 is a physiologic caspase for Bcl-2. Apoptotic extracts from 293 cells cleave Bcl-2 but not Bax, even though Bax is cleaved to an 18-kDa fragment in SK-NSH cells treated with ionizing radiation. In contrast to Bcl-2, cleavage of Bax was only partially blocked by caspase inhibitors. Inhibitor profiles indicate that Bax may be cleaved by more than one type of noncaspase protease. Immunodepletion of caspase-3 from 293 extracts abolished cleavage of Bcl-2 and caspase-7, whereas immunodepletion of caspase-7 had no effect on Bcl-2 cleavage. Furthermore, MCF-7 cells, which lack caspase-3 expression, do not cleave Bcl-2 following staurosporine-induced cell death. However, transient transfection of caspase-3 into MCF-7 cells restores Bcl-2 cleavage after staurosporine treatment. These results demonstrate that in these models of apoptosis, specific cleavage of Bcl-2 requires activation of caspase-3. When the pro-apoptotic caspase cleavage fragment of Bcl-2 is transfected into baby hamster kidney cells, it localizes to mitochondria and causes the release of cytochrome c into the cytosol. Therefore, caspase-3-dependent cleavage of Bcl-2 appears to promote further caspase activation as part of a positive feedback loop for executing the cell.  相似文献   

7.
Summary Chemotherapy has been used for treatment of breast cancer but with limited success. We characterized the effects of bcl-2 antisense and cisplatin combination therapy in two human isogenic breast carcinoma cells p53(+)MCF-7 and p53(−)MCF-7/E6. The transferrin-facilitated lipofection strategy we have developed yielded same transfection efficiency in both cells. Bcl-2 antisense delivered with this strategy significantly induced more cell death, apoptosis, and cytochrome c release in MCF-7/E6 than in MCF-7, but did not affect Fas level in both cells and activated caspase-8 equally. Cisplatin exerted same effects on cell viability and apoptosis in both cells, but released smaller amounts of cytochrome c while activated more caspase-8 in MCF-7/E6. The combination treatment yielded greater effects on cell viability, apoptosis, cytochrome c release, and caspase-8 activation than individual treatments in both cells although p53(−) cells were more sensitive. The potentiated activation of caspase-8 in the combination treatment suggested that caspase-8-mediated (but cytochrome c-independent) apoptotic pathway is the major contributor of the enhanced cell killing. Thus, bcl-2 antisense delivered with transferrin-facilitated lipofection can achieve the efficacy of killing breast cancer cells and sensitizing them to chemotherapy. Bcl-2 antisense and cisplatin combination treatment is a potentially useful therapeutic strategy for breast cancer irrespective of p53 status. Hesham Basma and Hesham El-Refaey contributed equally  相似文献   

8.
On treatment with 7-ketocholesterol (7-keto) or 7beta-hydroxycholesterol (7beta-OH), which are major oxysterols in atherosclerotic plaques, the simultaneous identification of oncotic and apoptotic cells suggests that these compounds activate different metabolic pathways leading to various modes of cell death. With U937, MCF-7 (caspase-3 deficient), MCF-7/c3 cells (stably transfected with caspase-3), we demonstrate that caspase-3 is essential for caspase-9, -7, -8 activation, for Bid degradation mediating mitochondrial cytochrome c release, for cleavage of poly(ADP-ribose) polymerase and inhibitor of the caspase-activated deoxyribonuclease, and, at least in part, for internucleosomal DNA fragmentation. The crucial role of caspase-3 was supported by the use of z-VAD-fmk and z-DEVD-fmk, which abolished apoptosis and the associated events. However, inactivation or lack of caspase-3 did not inhibit 7-keto- and 7beta-OH-induced cell death characterized by staining with propidium iodide, loss of mitochondrial potential. The mitochondrial release of apoptosis-inducing factor and endonuclease G was independent of the caspase-3 status, which conversely played major roles in the morphological aspects of dead cells. We conclude that caspase-3 is essential to trigger 7-keto- and 7beta-OH-induced apoptosis, that these oxysterols simultaneously activate caspase-3-dependent and/or -independent modes of cell death.  相似文献   

9.

Background

In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3).

Methods and results

Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment.

Conclusion

We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.  相似文献   

10.
Smac (second mitochondrial activator of caspases) is released from the mitochondria during apoptosis to relieve inhibition of caspases by the inhibitor of apoptosis proteins (IAPs). The release of Smac antagonizes several IAPs and assists the initiator caspase-9 and effector caspases (caspase-3, caspase-6, and caspase-7) in becoming active, ultimately leading to death of the cell. Translocation of Smac along with cytochrome c and other mitochondrial pro-apoptotic proteins represent important regulatory checkpoints for mitochondria-mediated apoptosis. Whether Smac and cytochrome c translocate by the same mechanism is not known. Here, we show that the time required for Smac efflux from the mitochondria of cells subjected to staurosporine-induced apoptosis is approximately four times longer than the time required for cytochrome c efflux. These results suggest that Smac and cytochrome c may exit the mitochondria by different pathways.  相似文献   

11.
细胞色素C在apoptin诱导宫颈癌Hela细胞凋亡中的作用   总被引:1,自引:0,他引:1  
目的研究肿瘤特异性凋亡基因(apoptin)在诱导Hela细胞凋亡中的信号转导机制。方法用含有apoptin基因的真核表达载体瞬间转染体外培养的Hela细胞;采用MTT法检测Hela细胞的凋亡;以比色法检测caspase-8和caspase-3的相对活性;Western blotting检测凋亡细胞中细胞色素C的表达量。结果 MTT法证明ap-optin基因瞬间转染的Hela细胞凋亡率明显高于其他各组(P〈0.01);caspase-3的活性升高,但caspase-8活性没有明显变化;细胞色素C释放量明显增多。结论 Apoptin基因可能通过促进线粒体释放细胞色素C激活caspase-3,进而诱导Hela细胞凋亡。  相似文献   

12.
Even though retinoids are widely used as adjuvant in chemotherapeutic interventions to improve cancer cell death, their mechanism(s) of action involves multiple overlapping pathways that remain unclear. We have previously shown that vitamin A, the natural precursor of the retinoids, induces oxidative-dependent cytochrome c release from isolated mitochondria, suggesting a putative mechanism for apoptosis activation. Using Sertoli cells in culture, we show that retinol causes mitochondrial-dependent apoptosis, involving oxidative stress. Apoptosis was evaluated by nuclear morphology, DNA fragmentation, and caspase-3/7 activity. Retinol induced oxidant- and time-dependent imbalance of several mitochondrial parameters, cytochrome c release and caspase-3/7 activation, leading cells to commit apoptosis. All parameters tested were attenuated or blocked by trolox co-administration, suggesting that retinol induces apoptosis through oxidative damage, which mitochondria plays a pivotal role.  相似文献   

13.
The function of key components of signal transduction, the Src family tyrosine kinases is dependent on catalytic activity as well as on intermolecular interaction achieved by their SH2 and SH3 modular domains. We have analyzed the effect of overexpression of the hematopoietic cell kinase (Hck) and its N-terminal unique and SH3 domains on cell survival. Overexpression of the N-terminal unique and SH3 domains (Hck-USH3) induced about 25% of expressing Cos-1 cells to undergo apoptosis 30 hrs after transfection. The full length p59 and p56 forms and the unique domain alone induced low levels of cell death. The unique and SH3 domain of a closely related kinase, Lyn did not induce apoptosis. Overexpression of a mutant USH3 domain (Gly Ala), that disrupts membrane localization, did not induce high level of apoptosis. Cells overexpressing Hck-USH3 showed activation of caspase-3 and release of cytochrome c from mitochondria into cytosol. Caspase-3 defective MCF-7 cells were resistant to apoptosis and cytochrome c release induced by Hck-USH3, which were restored by introducing the caspase-3 gene. These results suggest that Hck SH3 domain mediated signalling at the plasma membrane triggers a pathway leading to caspase-3 dependent cyto- chrome c release and apoptosis.  相似文献   

14.
15.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca(2+) on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca(2+) concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca(2+) was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨ(m)). Then the cytoplasmic Ca(2+) concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

16.
Photodynamic therapy (PDT) induces apoptosis in many cell types. Recent reports identified autophagy as an alternative cell-death process following PDT. Here we investigated the occurrence of autophagy after PDT with the photosensitizer Pc 4 in human cancer cells that are deficient in the pro-apoptotic factor Bax (human prostate cancer DU145) or the apoptosis mediator caspase-3 (human breast cancer MCF-7v) and in apoptosis-competent cells (MCF-7c3 stably overexpressing human pro-caspase-3 and Chinese hamster ovary CHO 5A100). Further, each cell line was also studied with and without stably overexpressed Bcl-2. By electron microscopy and immunoblot analysis, autophagy was observed in all cells studied, whether or not they were capable of typical apoptosis or overexpressed Bcl-2. Bcl-2 overexpression protected against PDT-induced apoptosis and loss of clonogenicity in apoptosis-competent cells (MCF-7c3 and CHO); however, it did not protect against the development of autophagy or against loss of clonogenicity in apoptosis-deficient cells (MCF-7v and DU145). The results show that autophagy may be the dominant cell death pathway following PDT in cells that are incapable of undergoing normal apoptosis. In such cells, Bcl-2 does not protect against autophagic death.  相似文献   

17.
Bid, a member of the pro-apoptotic Bcl-2 protein family, is activated through caspase-8-mediated cleavage into a truncated form (p15 tBid) during TNF-α(tumor necrosis factor α)-induced apoptosis. Activated tBid can induce Bax oligomerization and translocation to mitochondria, triggering the release of cytochrome c, caspase-3 activation and cell apoptosis. However, it is debatable that whether Bid and tBid can interact directly with Bax in living cells. In this study, we used confocal fluorescence microscope, combined with both FRET (fluorescence resonance energy transfer) and acceptor photobleaching techniques, to study the dynamic interaction between Bid and Bax during TNF-α-induced apoptosis in single living cell. In ASTC-a-1 cells, full length Bid induced Bax translocation to mitochondria by directly interacting with Bax transiently in response to TNF-α treatment before cell shrinkage. Next, we demonstrated that, in both ASTC-a-1 and HeLa cells, Bid was not cleaved before cell shrinkage even under the condition that caspase-8 had been activated, but in MCF-7 cells Bid was cleaved. In addition, in ASTC-a-1 cells, caspase-3 activation was a biphasic process and Bid was cleaved after the second activation of caspase-3. In summary, these findings indicate that, FL-Bid (full length-Bid) directly regulated the activation of Bax during TNF-α-induced apoptosis in ASTC-a-1 cells and that the cleavage of Bid occurred in advanced apoptosis.  相似文献   

18.
We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome c from mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with alpha-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-x(L) and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.  相似文献   

19.
K Liu  D Shu  N Song  Z Gai  Y Yuan  J Li  M Li  S Guo  J Peng  H Hong 《PloS one》2012,7(8):e40877
There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell- free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.  相似文献   

20.
The purpose of this study was to determine whether expression of tissue transglutaminase (TG2) and caspase-3 proteins in drug-resistant breast carcinoma MCF-7/DOX cells would render these cells selectively susceptible to apoptotic stimuli. Despite high resistance to multidrug resistance (MDR)-related drug, doxorubicin (> or =150-fold), the MCF-7/DOX cells were extremely sensitive to apoptotic stimuli. Thus, calcium ionophore, A23187 (A23187) and the protein kinase C inhibitor staurosporine (STS) each induced rapid and time-dependent apoptosis in MCF-7/DOX cells. The apoptosis induced by either agent was accompanied by caspase-3 activation and other downstream changes that are typical of cells undergoing apoptosis. The alterations upstream of caspase-3 activation, however, such as loss in mitochondrial membrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-8, and caspase-9, were detected only in STS-treated cells. The A12387 failed to induce any of the caspase-3 upstream changes, implying that A23187-induced apoptosis may utilize one or more novel upstream pathways leading to the activation of caspase 3. In summary, these data demonstrate that MCF-7/DOX cells are much more sensitive to apoptotic stimuli than previously thought and that A23187-induced apoptosis may involve some novel, yet unidentified, upstream pathway that leads to the activation of caspase-3 and other downstream events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号