首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of pressure on uptake and release of calcium by brain synaptosomes   总被引:1,自引:0,他引:1  
Uptake of radioactive calcium from guinea pig brain fractions enriched in synaptosomes could be significantly and reproducibly decreased by exposure to high pressure. Calcium efflux from preloaded synaptosomes was unaffected by pressure exposure. It was hypothesized that the development of pressure-induced encephalopathy may be related to an effect of pressure on the central nervous system calcium transport system.  相似文献   

2.
In this present communication, the in vitro inhibition of the uptake of [3H]-L-norepinephrine ([3H] NE) and [3H]-Serotonin ([3H] 5-HT) by eleven synthesized 2-substituted-4-phenyl quinolines were studied using rat brain synaptosomal preparations. Compounds with an open side chain were relatively weak inhibitors of the synaptosomal uptake of [3H] NE and [3H] 5HT. Compounds having a distance of three atoms between the terminal basic nitrogen of the side chain and the quinoline ring were better inhibitors of serotonin uptake than those compounds having a four-atom distance. The replacement of the side chain with a piperazine ring produced compounds which were more potent and selective inhibitors of the uptake of either [3H] 5-HT or [3H] NE. Further structure-activity relationships are also discussed.  相似文献   

3.
The influence of external sodium concentration on potassium (depolarizing agent)-stimulated calcium uptake and Ca+-dependent acetylcholine release by rat cerebral cortex synaptosomes has been studied. It was found that increased sodium concentration decreases both the Ca2+ uptake and the acetylcholine release, whereas a low external sodium concentration is stimulatory.  相似文献   

4.
The role of polyamines (PA) synthesis in NMDA receptor-mediated45Ca2+ fluxes and norepinephrine release was studied in rat hippocampal synaptosomes. NMDA (50M) caused a sharp (>2-fold) transient increase in PA synthesis regulating enzyme, ornithine decarboxylase (ODC) activity with concomitant elevation in PA levels in the order putrescine>spermidine>spermine. ODC inhibitor, -difluoromethylornithine (DFMO), and NMDA antagonist, 2-amino-5-phosphonovaleric acid (D-AP5), both blocked increases in ODC activity and PA levels. Activation of NMDA receptors induced a sharp (3 to 4-fold) and quick (15 seconds) increase in45Ca2+ uptake by synaptosomes within 15 seconds of exposure at 37°C. The efflux of45Ca2+ and3H-norepinephrine (NE) release at 22°C from pre-loaded synaptosomes was also significantly (2 to 4-fold) enhanced by NMDA within 15 seconds. These NMDA receptor-mediated effects on calcium fluxes and NE release were blocked by NMDA receptor-antagonists (DAP-5 and MK-801) and PA synthesis inhibitor, DFMO and the DFMO inhibition nullified by exogenous putrescine. These observations establish that ODC/PA cascade play an important role in transduction of excitatory amino acid mediated signals at NMDA receptors.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

5.
The pH dependence of the initial uptake of norepinephrine by rat whole brain synaptosomes was studied short incubation times at 37°C in order to examine the possible involvement of the phenolic OH group. The pH vs. uptake profile exhibits a maximum near pH 8.2 in H2O medium. When the medium was changed to 2H2O, the profile showed a shift of maximum corresponding to the pKa change of the phenolic OH group. The pH vs. uptake profile of tyramine was quite different from that of norepinephrine. These pH effects on uptake were explained as manifestations of the involvement of the phenolic OH group in the process.The amine and phenolic hydroxyl groups in norepinephrine were studied separately by employing two series of compounds structurally related to catecholamines, amphetamine-like and catechol0like, for their inhibitory effects on the uptake. The inhibitions were affected by changes in pH with changes in opposite directions found for the two series indicating the need for a positive charge in the side chain and suggesting an effect of the negative charge on the ring. These charge characteristics agreed with the pH profile observed in uptake. Consequently, the two groups with opposite charge characteristics in norepinephrine both appear to function in the uptake process.  相似文献   

6.
A preparation of synaptosomes isolated from rat brain was used as a model of nerve to study affects of drugs on uptake and release of biogenic amines. The influence of ionophores, which bind calcium, on the release of noripinephrine from synaptosomes was examined to determine their effect on the release of the amine. A23187 induced release of norepinephrine mainly as the amine and this action was enhanced by calcium and depressed by magnetism. X-537A however, released norepinephrine mostly as deaminated metabolites but acted independently of calcium or magnetism. A23187, therefore is thought to be associated at least in part, with exocytotic amine release, possibly by enhancing entry of calcium across the plasma membrane. X-537A on the other hand may act as a carrier of the amine across the vesicular membrane and expose the amine to intrasynaptosomal monoamine oxidase.  相似文献   

7.
The pH dependence of the initial uptake of norepinephrine by rat whole brain synaptosomes was studied using short incubation times at 37 degrees C in order to examine the possible involvement of the phenolic OH group. The pH vs. uptake profile exhibits a maximum near pH 8.2 in H2O medium. When the medium was changed to 2H2O, the profile showed a shift of maximum corresponding to the pKa change of the phenolic OH group. The pH vs. uptake profile of tyramine was quite different from that of norepinephrine. These pH effects on uptake were explained as manifestations of the involvement of the phenolic OH group in the process. The amine and phenolic hydroxyl groups in norepinephrine were studied separately by employing two series of compounds structurally related to catecholamines, amphetamine-like and catechol-like, for their inhibitory effects on the uptake. The inhibitions were affected by changes in pH with changes in opposite directions found for the two series indicating the need for a positive charge in the side chain and suggesting an effect of the negative charge on the ring. These charge characteristics agreed with the pH profile observed in uptake. Consequently, the two groups with opposite charge characteristics in norepinephrine both appear to function in the uptake process.  相似文献   

8.
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe.  相似文献   

9.
10.
Angiotensin II and III have hypertensive effects. They induce vascular smooth muscle constriction, increase sodium reabsorption by renal tubules, stimulate the anteroventral third ventricle area, increase vasopressin and aldosterone secretions, and modify catecholamine metabolism. In this work, angiotensin II and III effects on norepinephrine uptake and release in rat adrenal medulla were investigated. Both angiotensins decreased total and neuronal norepinephrine uptake. Angiotensin II showed a biphasic effect only on evoked neuronal norepinephrine release (an earlier decrease followed by a later increase), while increasing the spontaneous norepinephrine release only after 12 min. On the other hand, angiotensin III showed a biphasic effect on evoked and spontaneous neuronal norepinephrine release. Both angiotensins altered norepinephrine distribution into intracellular stores, concentrating the amine into the granular pool and decreasing the cytosolic store. The results suggest a physiological biphasic effect of angiotensin II as well as angiotensin III that may be involved in the modulation of sympathetic activity in the rat adrenal medulla.  相似文献   

11.
—Phospholipase A (EC 3.1.1.4) and phospholipase C (EC 3.1.4.3) were used for studying the role of phospholipid of synaptosomal membrane on norepinephrine uptake activity. Synaptosomes were isolated from cerebral cortex of guinea pigs and treated with phospholipase A or phospholipase C before the uptake experiments. Treatment of synaptosomes with phospholipase A has resulted in severe inhibition of norepinephrine-uptake. Under similar conditions, the activity of synaptosomal (Na + K)-ATPase (EC 3.6.1.4) was also inhibited by phospholipase A treatment whereas the activity of synaptosomal acetylcholinesterase (EC 3.1.1.8) was not affected. On the other hand, the norepinephrine-uptake was not influenced by phospholipase C treatment. The inhibition of norepinephrine-uptake after phospholipase A treatment may be due to the liberation of lyso-components of phospholipids since a low concentration of lysolecithin as well as other detergents (deoxycholate and sodium dodecyl sulphate) also inhibit the uptake activity. However, electron microscopic examination indicated that the synaptosomal particles still maintain their morphological features after phospholipase A treatment. It is possible that the active uptake of norepinephrine depends upon the fine arrangement of phospholipids present at the active sites of the synaptosomal membrane.  相似文献   

12.
Uptake of d-glucosamine by rat brain synaptosomes occurs via a saturable transport process (Km 2.1 mM, V 3.0 nmol/mg per min) which was clearly distinguishable from simple diffusion. This transport process is highly sensitive to cytochalasin (Ki = 7 · 10?5 mM. d-Glucose competitively inhibits d-glucosamine uptake with a Ki value of 8 · 10?1 mM.  相似文献   

13.
Clostridium neurotoxins produce inhibition of both basal and K(+)-evoked serotonin release in rat brain synaptosomes. To produce these effects, tetanus toxin (TeTx), as well as botulinum neurotoxin type A (BoNT/A), added to brain synaptosomes, must be incubated at 37 degrees C over a long interval (hours). This serotonin exocytosis inhibition was abolished with previous treatment with specific Zn2(+)-metalloprotease inhibitors. Nevertheless, a short incubation time produces different behavior of the indicated neurotoxins: TeTx significantly blocks the sodium-dependent, high-affinity serotonin uptake, whereas a small increase of this uptake was found with BoNT/A. Both Zn2(+)-metalloprotease active fragments, light chains of TeTx and BoNT/A, are unable to reproduce the block of the serotonin uptake, whereas the C-terminal portion of the TeTx heavy chain (Hc-TeTx), which binds specifically to the target tissue, inhibited the serotonin uptake in a dose-dependent manner. The IC50 of Hc-TeTx ranges from 0.62 to 2.08 nM. Binding of [3H]imipramine and [3H]serotonin did not change after toxin treatments, which indicates that these clostridium neurotoxins do not act on the serotonin high-affinity site at the serotonin transporter or at other serotonin high-affinity sites. These results could indicate that TeTx and Hc-TeTx bind to different targets than BoNT/A in the plasma membrane.  相似文献   

14.
15.
Lithium chloride exerts two opposite effects on dopamine uptake by synaptosomes isolated from rat caudate nucleus. Added in vitro, it inhibits dopamine uptake; whereas administered chronically in vivo, it enhances dopamine uptake in vitro. Thus, in vitro, 1, 2.5, 5 and 10 meqiv.l-1 of lithium chloride decrease [3H]dopamine uptake by 13, 17, 25 and 31%, respectively. Synaptosomes isolated from rats treated with lithium chloride for 20 days, show a 23% increase in [3H]dopamine uptake with respect to synaptosomes isolated from control rats. It is suggested that chronic lithium treatment stimulates a compensatory mechanism which overcomes its direct inhibitory effect on [3H]dopamine uptake.  相似文献   

16.
Summary The effects of local anesthetics on the topology of aminophospholipids and on the release and uptake of dopamine in rat brain synaptosomes have been examined. A metabolically intact preparation of synaptosomes was prepared which maintains aminophospholipid asymmetry and the capacity for sodium-driven uptake and depolarization-dependent release of dopamine. Incubation of synaptosomes with local anesthetics at 37°C induced perturbations in the topology of aminophospholipids as determined by their reactivities to the covalent probe trinitrobenzenesulfonic acid. The reaction of trinitrobenzenesulfonate with phosphatidylethanolamine and phosphatidylserine was inhibited 10–20% by low concentrations of tetracaine (1–100 m) and enhanced by high concentrations (0.3–1.0mm). Other local anesthetics showed a similar biphasic effect with a potency order of dibucaine>tetracaine>lidocaineprocaine. K+-stimulated, Ca2+-dependent release of [3H]dopamine was inhibited significantly at low concentrations of tetracaine (1–10 m) but enhanced at higher concentrations (0.1–1.0mm). Dibucaine and procaine had a similar biphasic effect on the dopamine release. For each of the local anesthetics tested, the inhibition of the reaction of phosphatidylethanolamine and phosphatidylserine with trinitrobenzenesulfonate occurred at concentrations which were shown also to inhibit the release of [3H]dopamine. Local anesthetics were shown to inhibit uptake of [3H]dopamine with a potency order which reflects their potency in producing anesthesia. The inhibition of dopamine uptake by dibucaine, tetracaine, lidocaine, or procaine was characterized by inhibitory constants (K I ) of 1.8±0.4 m, 27±5 m, 190 m and 0.5mm, respectively.Abbreviations TNBS 2,4,6-trinitrobenzene sulfonate - PE phosphatidylethanolamine - PS phosphatidylserine - ESR electron spin resonance - TLC thin-layer chromatography - DA dopamine  相似文献   

17.
We previously described a 27-amino acid peptide neurotoxin from the venom of Conus geographus, omega-conotoxin GVIA, which inhibits neuronal voltage-activated calcium channels. In this paper we describe the total synthesis of omega-conotoxin GVIA and demonstrate that it efficiently blocks voltage-activated uptake of 45Ca by standard synaptosomal preparations from chick brain. Dihydropyridines do not block 45Ca uptake under these conditions. Thus, the omega-conotoxin-sensitive, but dihydropyridine-insensitive uptake of 45Ca2+ by chick brain synaptosomes serves as a functional assay for a Ca channel target of omega-conotoxin. The use of synthetic GVIA should rapidly accelerate our understanding of the molecular biology of Ca2+ channels and their role in neuronal function.  相似文献   

18.
This study examined the effects induced by long-term pinealectomy, daily melatonin treatment to pinealectomized and intact rats, and a single melatonin injection on [14C]-serotonin (5-HT) uptake and release from synaptosomes obtained of hypothalamic regions. Pinealectomy inhibited the accumulation of labeled 5-HT by synaptosomes of the preoptic area-anterior hypothalamus (POA-AH), but it failed to alter the [K+]-evoked 5-HT release. Melatonin treatment for 10 consecutive days to pinealectomized rats restored 5-HT uptake in POA-AH, and also increased 5-HT release in medial and posterior hypothalamus. These results suggest that pineal melatonin plays a stimulatory role on the serotoninergic terminals of the hypothalamus. Moreover, when daily melatonin treatment was administered to intact rats a significant increase in 5-HT uptake activity by synaptosomes of all the hypothalamic regions was observed, but 5-HT release was unaffected. In contrast, a single melatonin injection induced a significant decrease in 5-HT release from synaptosomes of the POA-AH was observed. The results suggest the existence of a differential sensitivity in the mechanisms mediating melatonin actions on 5-HT uptake/release, which depends on the presence of the pineal gland in the animals and on the frequency of the treatments with the pineal hormone.  相似文献   

19.
GABA-transaminase has been found to be released from rat brain synaptosomes by halothane in a dose-related manner. The releases of both GABA-transaminase and succinic semialdehyde dehydrogenase were increased with time. The release of other enzymes (creatine kinase, glutamate decarboxylase, aspartate transaminase, lactate dehydrogenase, and malate dehydrogenase) was less in magnitude and not related to the duration of incubation. Such observations suggested a specific event in the halothane-induced release of GABA-catabolizing enzymes. A suggestion linking mode of anesthetic action to a mitochondrial effect of volatile anesthetics was made.  相似文献   

20.
Previous studies have shown that, at concentrations of 1 M and 10 M, HP 749 increased electrically-stimulated release of [3H]norepinephrine (NE) from rat cortical slices. These effects were Ca2+-dependent, indicating an effect on release from vesicular stores. At 100 M, HP 749 had two effects. In addition to enhancing the Ca2+-dependent electrically-evoked release, it also induced a rise in the basal efflux (spontaneous release) of [3H]NE, which was observed in both cortical slices and synaptosomes. The spontaneous release effect was (1) not blocked by the reuptake inhibitor nomifensine, (2) not affected by removal of external calcium, (3) not blocked by vesicular depletion with reserpine, and (4) not inhibited by the sodium channel blocker tetrodotoxin (TTX). As would be expected, the spontaneous [3H]NE release induced by the cytoplasmic releaser tyramine and the sodium channel activator veratridine were blocked by nomifensine and TTX, respectively. Notably, however, the Ca2+-independent veratridine-induced release was completely blocked by 100 M HP 749. The mechanism of spontaneous release of [3H]NE caused by 100 M HP 749 is unresolved at present; however, the data are consistent with this release originating from a cytoplasmic source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号